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Context and objectives

Source galaxy, unlensed
19
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• Convergence map 𝜿 ∈ ℝ𝐾: isotropic dilation of the galaxy image.
• Proportional to the projected mass along the line of sight.
• Used to constrain cosmological parameters ⇒ variable of interest.
• However, 𝜿 cannot be directly measured.

• Shear map 𝜸 ∈ ℂ𝐾: anisotropic stretching of the galaxy image.
• Relationship between shear and convergence maps: 𝜸 = 𝐀𝜿, with 𝐀 ∈ ℝ𝐾×𝐾 (known).
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After mean-centering 
(mass-sheet degeneracy)
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1 K. Osato, J. Liu, and Z. Haiman, “κTNG: effect of baryonic processes on weak lensing with IllustrisTNG simulations,” Monthly Notices of 
the Royal Astronomical Society, vol. 502, no. 4, pp. 5593–5602, Apr. 2021

Context and objectives
Example with the κTNG simulated dataset1

Simulated convergence map Corresponding shear map (real and imaginary parts)

• As for the convergence map 𝜿, the true shear map 𝜸 cannot be directly measured.

• Unbiased estimator of 𝜸, obtained by measuring galaxy ellipticities: 𝜸 ⟵ 𝝐 − 𝝐

• Relation between 𝜸 (observable) and 𝜿 (quantity of interest):

𝜸 = 𝐀𝜿 + 𝒏,

with noise 𝒏 assumed Gaussian, zero-centered and with diagonal covariance matrix 𝚺.

• Noise level (standard deviation per pixel): 𝚺 𝑘, 𝑘 = σ/𝑁𝑘.
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Intrinsic ellipticity (std)

Nb measured galaxies
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Expected miscoverage rate
(% of pixels outside the bounds)
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.
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Confidence level ∈ 0, 1
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

May be random
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Depends on 𝜸 = 𝐀𝜿 + 𝒏

Two sources of randomness

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Proposed approach

1. Compute a point estimate ෝ𝜿 and a residual ො𝒓 using two families of mass 
mapping methods:

a. Model-driven methods: Kaiser-Squires inversion,1 proximal Wiener filtering,2 MCALens;3

b. Data-driven (deep-learning-based) methods: DeepMass,4 DLPosterior,5

c. New method relying on plug-and-play forward-backward splitting.

2. Set initial bounds:
ෝ𝜿− ≔ ෝ𝜿 − ො𝒓 and    ෝ𝜿+ ≔ ෝ𝜿 + ො𝒓

3. Post-processing: adjust residual ො𝒓 using a calibration set.

→ Distribution-free UQ, does not assume any prior distribution on 𝜿.

→Works for any blackbox prediction method, including deep learning.

1 Kaiser, N. & Squires, G. Astrophysical Journal 404, 441–450 (1993)
2 Bobin, J., Starck, J.-L., Sureau, F. & Fadili, J. Advances in Astronomy 2012, e703217 (2012)
3 Starck, J.-L., Themelis, K. E., Jeffrey, N., Peel, A. & Lanusse, F. A&A 649, A99 (2021)
4 Jeffrey, N., Lanusse, F., Lahav, O. & Starck, J.-L. MNRAS 492, 5023–5029 (2020)
5 Remy, B. et al. A&A 672, A51 (2023)
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The focus of this 
presentation
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Reconstruction accuracy

33

Ground truth Kaiser-Squires Iterative Wiener DeepMass PnP-FB

RMSE = 31.8 RMSE = 18.3 RMSE = 17.4 RMSE = 17.4
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Deep-learning-based methods
DeepMass

• Minimizing the MSE 𝐹𝚯 𝜸 − 𝜿 2
2 evaluated on the training set →

DeepMass approximates the posterior mean:

𝐹𝚯 𝜸 ≈ ෝ𝜿 ∶= ′𝜿 𝑝 𝜿′ 𝜸) 𝑑𝜿′.

• Remark about DLPosterior: MCMC sampling, prior learned from data →
ෝ𝜿 can be approximated by averaging over samples.

34

Wiener filtering
(one iteration) UNet
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Deep-learning-based methods
Strengths and weaknesses

• Objective: implement a DL mass mapping method, satisfying:
• Fast inference→ we need a point estimate instead of sampling from the full 

posterior.

• Does not need re-training for each new noise covariance matrix or mask.

• Proposed solution: iterative algorithm with plug-and-play (PnP).

35

8



PnP forward-backward algorithm

• Objective: find the MAP estimate ෝ𝜿 satisfying:

• Iterative forward-backward algorithm:

• PnP: replace the proximal operator by a deep denoiser trained on a 
dataset of simulated convergence maps, corrupted by a white noise 
of variance 𝜇.

36
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Bayesian interpretation, 
to be taken with caution!



PnP forward-backward algorithm

• Objective: find the MAP estimate ෝ𝜿 satisfying:

• Iterative forward-backward algorithm:

• PnP: replace the proximal operator by a deep denoiser trained on a 
dataset of simulated convergence maps, corrupted by a white noise 
of variance 𝜇.

38

Acts like a denoiser for images 
corrupted by a white noise of 
variance 𝜇
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• How to get a first estimation of the residual ො𝒓?

• DLPosterior: uncertainty embedded in posterior sampling.

• DeepMass: possible to use moment networks.1 Idea: minimizing the MSE 

𝐺𝛀 𝜸 − 𝜿 − 𝐹𝚯 𝜸
2

2

2

evaluated on the training set.

• PnP-FB: train a moment network for the denoiser, then apply it to the 
output of the iterative algorithm.

Uncertainty estimation before calibration

391 Jeffrey, N. & Wandelt, B. D. Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020)
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Already trained UNet
(point estimate)
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→ Update the loss
function accordingly
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Point estimate and uncertainty bounds
Wiener

Point estimate Lower bound Upper bound
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Point estimate and uncertainty bounds
Wiener

Point estimate Lower bound Upper bound

Miscoverage for high-density regions: 
ground truth larger than upper bound
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Point estimate and uncertainty bounds
DeepMass

Point estimate Lower bound Upper bound
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Point estimate and uncertainty bounds
DeepMass

Point estimate Lower bound Upper bound

More accurate UQ

46

12



Point estimate and uncertainty bounds
PnP-FB (ours)

Point estimate Lower bound Upper bound
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Calibration methods

Objective (reminder): given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

Two postprocessing calibration methods:

• Conformalized quantile regression (CQR);1

• Risk-controlling prediction sets (RCPS).2

General principles: consider a calibration set 𝜸𝑖 , 𝜿𝑖 𝑖=1
𝑛 .

1. Compute point estimates ෝ𝜿𝑖 and residuals ො𝒓𝑖 for each input;

2. Compute a calibration parameter 𝜆 from ෝ𝜿𝑖 , ො𝒓𝑖 , 𝜿𝑖 𝑖=1
𝑛 and 𝛼;

3. Adjust the residual ො𝒓, using a calibration function 𝑔𝜆.

1 Y. Romano, E. Patterson, and E. Candès, “Conformalized Quantile Regression,” NeurIPS, 2019

2 A. N. Angelopoulos et al., “Image-to-Image Regression with Distribution-Free UQ and Applications in Imaging,” ICML, 2022 48
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Ƹ𝜅

Ƹ𝜅+

Ƹ𝜅−

𝑔𝜆 Ƹ𝑟

E.g., 𝑔𝜆 Ƹ𝑟 = Ƹ𝑟 + 𝜆
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Calibration methods
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Ƹ𝜅

𝑔𝜆 Ƹ𝑟

Ƹ𝜅𝜆
+

Ƹ𝜅𝜆
−

Works for any blackbox predictor!
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Results

55

• Calibration set of 100 images from 𝜅TNG simulations
• Test set of 125 images from 𝜅TNG simulations
• Target: 𝛼 ≈ 4,6% (2𝜎-confidence)
• CQR: the minimal size depends on the desired 

confidence level:
2𝜎-confidence → 𝑛min = 21
3𝜎-confidence → 𝑛min = 370
4𝜎-confidence → 𝑛min = 15 787

15



Results
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Conclusion

• New deep-learning-based mass mapping method, fast at inference and 
generalizable to any noise covariance matrix / any mask.

• Includes initial uncertainty estimation.
• Distribution-free UQ for mass mapping: provides coverage guarantees with 

a limited number of calibration examples.
• Works for any mass mapping method, including deep learning-based 

approaches.
• PnP-FB: same accuracy as DeepMass (SOTA), slightly smaller error bars.
• Next steps:

• train on several cosmologies → CosmoSLICS;
• extend results to the sphere;
• beyond pixelwise uncertainty;
• UQ: focus on high-density regions.
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