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ABSTRACT

Aims. In inverse problems, distribution-free uncertainty quantification (UQ) aims to obtain error bars in the reconstruction with
coverage guarantees that are independent of any prior assumptions about the data distribution. This allows for a better understanding
of how intermediate errors propagate through the pipeline. In the context of mass mapping, uncertainties could lead to errors that
affects our understanding of the underlying mass distribution, or could propagate to cosmological parameter estimation, thereby
impacting the precision and reliability of cosmological models. Current surveys, such as Euclid or Rubin, will provide new weak
lensing datasets of very high quality. Accurately quantifying uncertainties in mass maps is therefore critical to fully exploit their
scientific potential and to perform reliable cosmological parameter inference.
Methods. In this paper, we extend the conformalized quantile regression (CQR) algorithm, initially proposed for scalar regression,
to inverse problems. We compare our approach with another distribution-free approach based on risk-controlling prediction sets
(RCPS). Both methods are based on a calibration dataset, and offer finite-sample coverage guarantees that are independent of the data
distribution. Furthermore, they are applicable to any mass mapping method, including blackbox predictors. In our experiments, we
apply UQ on three mass-mapping method: the Kaiser-Squires inversion, iterative Wiener filtering, and the MCALens algorithm.
Results. Our experiments reveal that RCPS tends to produce overconservative confidence bounds with small calibration sets, whereas
CQR is designed to avoid this issue. Although the expected miscoverage rate is guaranteed to stay below a user-prescribed threshold
regardless of the mass mapping method, selecting an appropriate reconstruction algorithm remains crucial for obtaining accurate
estimates, especially around peak-like structures, which are particularly important for inferring cosmological parameters. Additionally,
the choice of mass mapping method influences the size of the error bars.

Key words. cosmology: observations – methods: statistical – gravitational lensing: weak

1. Introduction

Mapping the distribution of matter across the universe is essen-
tial for advancing our understanding of its evolution and con-
straining cosmological parameters. While dark matter consti-
tutes approximately 85% of the observable universe’s total mass
according to the ΛCDM model, it cannot be directly observed.
Instead, its presence can be inferred from gravitational effects,
such as the deflection of light rays from distant galaxies. In
the weak lensing regime, this phenomenon causes anisotropic
stretching of galaxy images, known as shear, which can be used
to reconstruct mass maps (for a detailed review on the topic, see
Kilbinger 2015). Estimating shear involves detecting statistical
anomalies in galaxy ellipticities (Kaiser & Squires 1993). This
task is complicated by inherent noise, making weak lensing mass
mapping an ill-posed inverse problem without appropriate priors
on the matter density field. Furthermore, missing data often oc-
cur due to bright objects in the foreground, all the more compro-
mising straightforward solutions. Recent methodologies, includ-
ing some relying on deep learning, have aimed to enhance mass
map reconstructions. However, quantifying uncertainty, particu-
larly with blackbox predictors, remains a significant challenge.

Having accurate uncertainty estimates in inverse problems
is crucial for obtaining reliable solutions and contributing to a
deeper scientific understanding of our data. In the case of mass
mapping, the main motivations to derive uncertainty quantifiers

are: i) uncertainties could lead to errors, impacting our analy-
sis of the underlying mass distribution and affecting theories on
the nature of dark matter; ii) mass maps are also used for cos-
mological parameter inference using high-order statistics, where
any error could propagate, leading to uncertainties in these pa-
rameters; iii) uncertainties may mask physical models of galaxy
and cluster growth, affecting our understanding of the processes
that determine the evolution of these structures over cosmic time;
and iv) uncertainties could introduce bias in the measurements of
cluster masses. Therefore, it is essential to not only improve the
quality of the mass reconstructions but also to quantify and min-
imize uncertainties to optimize the potential of future surveys
such as Euclid or Rubin.

In this paper, we build on a paradigm called conformal pre-
diction (Lei & Wasserman 2014; Vovk et al. 2022) in the context
of weak lensing mass mapping, using simulated data. Specifi-
cally, we propose a novel extension of the conformalized quan-
tile regression (CQR) algorithm (Romano et al. 2019) to inverse
problems, especially mass mapping. Relying on a calibration
set, it is applicable to any prediction method, including black-
box deep learning models, and offers distribution-free, per-pixel
coverage guarantees with prescribed confidence levels. For the
sake of comparison, we also applied a calibration procedure
based on risk-controlling prediction sets (RCPS) (Angelopou-
los et al. 2022b) to the problem at hand. We observed that the
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latter approach tends to produce overconservative confidence
bounds with small calibration sets, unlike CQR. We tested the
two calibration methods on three mass mapping techniques: the
Kaiser-Squires inversion (Kaiser & Squires 1993), the forward-
backward proximal iterative Wiener filtering (Bobin et al. 2012),
and the MCALens iterative algorithm (Starck et al. 2021). We
evaluated the methods in terms of miscoverage rate and predic-
tion interval size.

This paper is organized as follows. In Sect. 2, we present a
state-of-the-art review on the weak lensing inverse mass map-
ping problem and the currently used quantification methods.
Then, Sect. 3 introduces and compares the two distribution-free
calibration approaches (CQR and RCPS). In Sect. 4, we describe
our experimental settings and present the results, followed by a
discussion in Sect. 5. Finally, Sect. 6 concludes the paper.

2. State of the art on the mass mapping inverse
problem with uncertainty quantification

Throughout the paper, we use the following notation conven-
tions. Deterministic vectors are denoted with bold lower-case
Greek or Latin letters (κ), while random vectors are represented
with bold sans-serif capital letters (K). Deterministic matrices
are indicated by standard bold capital letters (A). Furthermore,
indexing is done using brackets (κ[k], K[k] or A[k, l]).

The weak lensing mass mapping problem consists in recov-
ering a convergence map κ ∈ RK2

from an observed, noisy shear
map γ ∈ CK2

. Both fields have been discretized over a square
grid of size K × K, with K ∈ N, and are represented as flattened
one-dimensional vectors. The relationship between the shear and
convergence maps is expressed as follows:

γ = Aκ + n, (1)

where A ∈ CK2×K2
is a known linear operator, referred to as the

inverse Kaiser-Squires filter, and n ∈ CK2
is the realization of a

Gaussian noise N with zero mean and known diagonal covari-
ance matrix Σn ∈ R

K2×K2
. A more detailed description of the

problem is provided in Appendix A.

2.1. Existing mass mapping methods

The most simple—and widely used—algorithm for performing
mass mapping is the Kaiser-Squires (KS) method (Kaiser &
Squires 1993), which consists in inverting the linear operator A
in the Fourier space, then applying a Gaussian smoothing to re-
duce the noise. However, it yields poor results because it does
not properly handle noise and missing data. More recent works
have proposed to incorporate handcrafted priors in the optimiza-
tion problem, leading to improved reconstruction. Among those,
we can cite an iterative Wiener algorithm based on a Gaussian
prior (Bobin et al. 2012), the GLIMPSE2D algorithm based on a
sparse prior in the wavelet domain (Lanusse et al. 2016), and the
MCALens algorithm (Starck et al. 2021), which considers the
combination of a Gaussian component and a sparse component.
More details on these methods are given in Appendix B.

The above approaches are essentially model-driven. That is,
their design is based on knowledge about the underlying physics,
and as such requires handcrafted modeling that may be over-
simplifying. Alternatively, data-driven approaches, which take
advantage of recent breakthroughs in deep learning, rely on data
to learn priors and accurately reconstruct mass maps. Among
those, we can cite denoising approaches based on adversarial

networks (Shirasaki et al. 2019, 2021), DeepMass (Jeffrey et al.
2020), which takes as input the Wiener solution and outputs an
enhanced point estimate by using a UNet architecture, and DL-
Posterior (Remy et al. 2023), which draws samples from the full
Bayesian posterior distribution.

2.2. Uncertainty quantification

We consider a point estimate of the convergence map, denoted
by κ̂ ∈ RK2

, obtained using one of the mass mapping method
presented in Sect. 2.1. Uncertainty quantification (UQ) involves
estimating lower and upper bounds κ̂− and κ̂+, such that the prob-
ability of miscoverage remains below a pre-specified threshold
α ∈ ]0, 1[. The various approaches to achieve this can be catego-
rized into two main types: frequentist (where the ground truth κ
is a deterministic unknown vector), and Bayesian (where κ is the
outcome of a random vector K associated with a given prior dis-
tribution). In the following sections, we review both frameworks,
discuss their limitations, and introduce the need for calibration.

2.2.1. Frequentist framework

In this framework, the ground truth convergence map κ is deter-
ministic. However, due to noise, the observed shear map γ is the
outcome of a random vector:

Γ := Aκ + N, with N ∼ N(0, Σn). (2)

Consequently, the point estimate κ̂ and the bounds κ̂− and κ̂+,
which are computed from γ, are also outcomes of random vec-
tors, that we respectively denote by K̂, K̂

−
, and K̂

+
. In this con-

text, we target the following coverage property:

P
{
κ[k] <

[
K̂
−
[k], K̂

+
[k]

]}
≤ α, (3)

for any pixel k ∈ {1, . . . ,K2}. In this section, we review some
methods to achieve this.

Analytical formulation. We assume that the point estimate κ̂ is
obtained with a linear operator:

κ̂ := Bγ, thus, K̂ := BΓ. (4)

As shown in Appendix B, this applies to the KS (B.1) and Wiener
(B.5) solutions. Plugging (2) into (4) yields

K̂ = BAκ + BN. (5)

Then, we can easily show that K̂ follows a multivariate Gaussian
distribution:

K̂ ∼ N(BAκ, Σκ̂), with Σκ̂ := BΣnB∗. (6)

Now, we consider the following hypothesis:

Hypothesis 1. The estimator K̂ is unbiased: BAκ = κ.

We consider the (deterministic) residual vector r̂ satisfying

r̂[k] := Φ−1
k (1 − α/2) > 0, (7)

where Φk denotes the cumulative distribution function (CDF) of
a Gaussian distribution with zero mean and variance

σ2
k := Σκ̂[k, k]. (8)
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Then, by setting

K̂
−

:= K̂ − r̂ and K̂
+

:= K̂ + r̂, (9)

we can prove that, under Hyp. 1, the coverage property (3) is
satisfied.

On the other hand, GLIMPSE2D and MCALens (B.6) are
associated with nonlinear operators on the form

κ̂ := B(γ) · γ, (10)

where the matrix B(γ) is characterized by a set of active coef-
ficients in a wavelet dictionary, which are dependent on the in-
put γ. Therefore, B(γ) is the outcome of a random matrix B(Γ),
which we assume to be noise-insensitive, essentially depending
on the true convergence map κ:

Hypothesis 2. B(Γ) = B(Aκ).

Under Hyp. 2, B(Γ) is approximated with a deterministic ma-
trix B(Aκ), allowing us to adopt a similar approach as in the lin-
ear case (4), using B := B(Aκ).

Practical implementations. Estimating confidence bounds in
the above framework only requires to compute the diagonal el-
ements of Σκ̂, as evidenced in (8). However, we need explicit
access to all the elements of B, which is infeasible in practice.

In the KS case, by exploiting the spectral properties B, we
can show that

diag(Σκ̂) = diag(Σn) ∗ |b|2, (11)

where b denotes the first column vector of B and ∗ denotes the
2D circular convolution product.1 In practice, the convolution fil-
ter |b|2 is fast-decaying, and therefore can be cropped to a much
smaller size with negligible impact on the result.

In a more general case, the diagonal elements of Σκ̂ cannot
simply be obtained with a 2D convolution. Alternatively, they
can be estimated with a Monte-Carlo approach, by noticing that
Σκ̂ is also the covariance matrix of BN. Then, by propagating
noise realizations through operator B, and by computing the em-
pirical variance of the outputs at the pixel level, we get an em-
pirical, unbiased estimate of the diagonal elements of Σκ̂. This
method is straightforward for linear operators such as KS and
Wiener filters, and has also been used by Starck et al. (2021) for
MCALens.

2.2.2. Bayesian framework

Bayesian UQ pursue a different objective than (3). In this frame-
work, the ground truth convergence map κ is the outcome of a
random vector K with unknown distribution µ∗. In this context,
the inverse problem (2) becomes

Γ := AK + N. (12)

We consider a prior distribution µ estimating µ∗, that can be
either built from expert knowledge (model-driven approaches),
or learned from a training set (data-driven approaches). We as-
sume µ to be associated with a probability density function fµ(κ).
Then, given an observation γ drawn from Γ, one can derive a
posterior density fµ(κ |γ) satisfying Bayes’ rule:

fµ(κ |γ) ∝ fΓ |K(γ | κ) fµ(κ) , (13)

1 The 2D convolution is performed after having reshaped the vectors
to K × K matrices.

where the likelihood density fΓ |K(γ | κ) corresponds to a multi-
variate Gaussian distribution with mean Aκ and covariance ma-
trix Σn, according to (12):

fΓ |K(γ | κ) ∝ exp
(
−

1
2
∥γ − Aκ∥2

Σ−1
n

)
. (14)

Now, we consider uncertainty bounds κ̂− and κ̂+ satisfying

Pµ
{
K[k] <

[
κ̂−[k], κ̂+[k]

] ∣∣∣ Γ = γ }
≤ α, (15)

where the miscoverage rate for pixel k ∈ {1, . . . ,K2 − 1} is ob-
tained by marginalizing the posterior density over all other pix-
els:

Pµ
{
K[k] <

[
a, b

] ∣∣∣ Γ = γ }
:= 1 −

∫
Rk−1

∫ b

a

∫
RK2−k

fµ
(
κ′ |γ

)
dκ′. (16)

As in Sect. 2.2.1, we denote by K̂
−

and K̂
+

the random variables
from which κ̂− and κ̂+ are drawn, which are dependent on Γ.

In practice, computing the full posterior is intractable. In-
stead, approximate error bars can be obtained using two different
families of methods.

Full posterior sampling. There exists a broad literature focus-
ing on sampling high-dimensional posterior distributions, using
proximal MCMC algorithms with Langevin dynamics (Pereyra
2016; Durmus et al. 2018; Cai et al. 2018a; Pereyra et al. 2020;
Laumont et al. 2022; McEwen et al. 2023; Klatzer et al. 2024), or
deep generative models based on neural score matching (Remy
et al. 2023), as reviewed in Sect. 2.1. From these samples, we
can derive a point estimate κ̂, corresponding to an empirical ap-
proximation of the posterior mean:

κ̂ ≈ Eµ
[
K | Γ = γ

]
:=

∫
RK2

fµ
(
κ′ |γ

)
κ′ dκ′, (17)

by computing the pixelwise empirical mean, as well as confi-
dence bounds κ̂− and κ̂+, by computing the pixelwise (α/2)-th
and (1 − α/2)-th empirical quantiles, respectively.

Fast Bayesian UQ. MCMC sampling methods offer a detailed
representation of the posterior distribution, but are known to be
computationally expensive. Alternatively, other approaches can
estimate pixelwise error bars orders of magnitude faster without
the need for high-dimensional sampling.

For instance, assuming an explicit log-concave prior, con-
centration inequalities (Pereyra 2017) can be used to provide
a stable, though somewhat conservative, approximation of the
highest-posterior density region from the MAP point estimate.
This method has been used to compute Bayesian error bars in
the contexts of radio-interferometry (Cai et al. 2018b) and mass
mapping (Price et al. 2020). Recently, Liaudat et al. (2023) de-
veloped a data-driven model based on similar principles, imple-
menting a learned prior specifically designed to be log-concave.

Alternatively, Jeffrey & Wandelt (2020) proposed a direct es-
timation of lower-dimensional marginal posterior distributions
(for instance, per-pixel estimation) that can quantify uncertainty
without relying on high-dimensional MCMC sampling.
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2.2.3. Limits of the methods

The methods reviewed above provide an initial guess for the con-
fidence bounds κ̂− and κ̂+, but their accuracy strongly depends on
the choice of the reconstruction method and / or the prior data
distribution. Let us review the weaknesses of both frameworks
more specifically.

Frequentist framework. As explained hereafter, Hyp. 1 gener-
ally does not hold. That is, applying the mass mapping method
on a noise-free shear map Aκ does not necessarily accurately
recover κ.

Regarding the KS filter, we have B := SA, where S denotes a
Gaussian low-pass filter. This smoothing operator induces a bias
in the solution. In addition, the Wiener and MCALens solutions
can be interpreted as maximum a posteriori (MAP) Bayesian es-
timates, which are purposely biased:

κ̂ ∈ argminκ′
{
− log fµ

(
κ′ |γ

)}
(18)

= argminκ′
{

1
2

∥∥∥γ − Aκ′
∥∥∥2
Σ−1

n
− log fµ

(
κ′

)}
, (19)

where fµ(κ′) and fµ(κ′ |γ) respectively denote the prior and pos-
terior densities, as described in Sect. 2.2.2. The MAP estimator
aims to find the most probable solution according to the prior dis-
tribution µ, given an observation γ. Intuitively, if this prior does
not align with the true distribution µ∗ from which K is drawn,
then the estimator is likely to produce a poor reconstruction κ̂
of the ground truth κ, even in the absence of noise. For exam-
ple, it is well known that convergence maps are poorly modeled
by Gaussian distributions (Starck et al. 2021). Consequently, the
Wiener filter, which assumes a Gaussian prior, tends to blur re-
constructed convergence maps around peak-like structures.

Remark 1. Bayesian MAP interpretations of regularized varia-
tional problems should be approached with caution. In fact, this
is a possible but not the only interpretation. This is for instance
the case for sparse regularization, as employed in GLIMPSE2D
and MCALens. We refer readers to Starck et al. (2013) for a de-
tailed discussion on this topic.

We identify two additional limitations of the frequentist ap-
proach. First, in nonlinear cases such as MCALens, Hyp. 2 is
only an approximation. Second, the Monte-Carlo estimation of
diag(Σκ̂) may introduce sampling errors. To correct these errors
without the computational burden of increasing the number of
samples, the confidence bounds can be adjusted using bootstrap-
ping. This approach, however, is beyond the scope of this paper.
Instead, we focus on distribution-free calibration methods, as de-
scribed in Sect. 3.

For all these reasons, the coverage property for the frequen-
tist framework, stated in (3), is no longer guaranteed. As evi-
denced in our experiments (see Table 2), this approach tends to
underestimate the size of the error bars.

Bayesian framework. If the prior distribution µ, from which
the confidence bounds κ̂− and κ̂+ are estimated, does not align
with the true unknown distribution µ∗ associated with K, then
the empirical miscoverage rate may be inconsistent with (15),
leading to under- or over-confident predictions. In particular, the
data-driven methods rely on both the quality of the training data
and the ability of the model to capture the correct prior.

In Sect. 3, we will introduce two post-processing calibration
procedures, respectively based on conformalized quantile regres-
sion (CQR) and risk-controlling prediction sets (RCPS), adjust-
ing the confidence bounds κ̂− and κ̂+, obtained in either frequen-
tist or Bayesian frameworks. The goal is to get coverage guaran-
tees that do not suffer from the above limitations. Both methods
are distribution-free (that is, they do not require any prior as-
sumption on the data distribution), work for any mass mapping
method (including blackbox deep-learning models), and provide
valid coverage guarantees in finite samples.

3. Distribution-free uncertainty quantification

In Sect. 3.1, we present the CQR algorithm by Romano et al.
(2019), in a generalized formulation that we established. Origi-
nally designed for scalar regression, we propose in Sect. 3.2 an
extension to inverse problems, including mass mapping. Then,
in Sect. 3.3, we review the RCPS algorithm by Angelopoulos
et al. (2022b). In Sect. 3.4, we present the major differences
between the two approaches. Finally, in Sect. 3.5, we explain
how the theoretical guarantees provided by CQR and RCPS dif-
fer from those targeted by frequentist and Bayesian UQ methods
reviewed in Sect. 2.2.

3.1. Conformalized quantile regression: general framework

Conformal prediction, used in the context of classification
(Sadinle et al. 2019; Romano et al. 2020; Angelopoulos et al.
2022a) and quantile regression (CQR) (Romano et al. 2019), of-
fers finite-sample coverage guarantees with user-prescribed con-
fidence levels. In this section, we present a generalized version
of the CQR algorithm, in which we introduce the concept of cal-
ibration function.

Let (X, Y) denote a pair of random variables taking values in
I×R, where X is a scalar or multivariate variable of observables,
and Y is the response variable. We now consider a prediction
interval Ĉ : I → 2R. It satisfies, for any x ∈ I,

Ĉ(x) :=
[
f̂ (x) − r̂(x), f̂ (x) + r̂(x)

]
, (20)

for some prediction functions f̂ : I → R (producing point es-
timates), and r̂ : I → R+ (producing residuals). In practice, the
bounds can be obtained via quantile regression. In this frame-
work, the predictors f̂ − := f̂ − r̂ and f̂ + := f̂ + r̂ are designed to
approximate the (α/2)-th and (1 − α/2)-th quantiles of Y, for a
given α ∈ ]0, 1[. However, the following risk of miscoverage:

P
{
Y < Ĉ(X)

}
≤ α (21)

is only guaranteed asymptotically, for some specific models, and
under regularity conditions (Takeuchi et al. 2006; Steinwart &
Christmann 2011).

Now, given a calibration parameter λ ∈ [a, b] ⊆ R (with
a and b possibly infinite), we introduce a calibrated prediction
interval as follows:

Ĉλ(x) :=
[
f̂ (x) − gλ(r̂(x)) , f̂ (x) + gλ(r̂(x))

]
, (22)

where

gλ : R+ → R+ (23)

denotes a family of non-decreasing calibration functions param-
eterized by λ, such that gλ0 = Id for some specific value λ0 (no
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calibration), and producing larger prediction intervals with in-
creasing values of λ:

λ ≤ λ′ =⇒ ∀r ∈ R+, gλ(r) ≤ gλ′ (r). (24)

Therefore, gλ shrinks the initial prediction interval if λ < λ0, and
expands it if λ > λ0. Moreover, we assume that λ 7→ gλ(r) is
continuous. Examples of such calibration functions are provided
in Fig. 4. For instance, in the original paper by Romano et al.
(2019), gλ(r) = max(r + λ, 0) for any λ ∈ R (see Fig. 4a), and
therefore,

Ĉλ(x) :=
[
f̂ −(x) − λ, f̂ +(x) + λ

]
. (25)

The goal is then to find the smallest value of λ such that
(21) is guaranteed with Ĉ := Ĉλ. For this, we consider a calibra-
tion set (xi, yi)n

i=1 drawn from n ∈ N pairs of random variable
(Xi, Yi)n

i=1. We then compute the following conformity scores,
for any i ∈ {1, . . . , n} (the smaller the better):

λi : = min
{
λ ∈ [a, b] : yi ∈ Ĉλ(xi)

}
(26)

= min
{
λ ∈ [a, b] : gλ

(
r̂(xi)

)
≥

∣∣∣ f̂ (xi) − yi

∣∣∣} , (27)

and the conformity score is set to a (resp. b) if the condition
is always (resp. never) met. The existence of λi ∈ [a, b] is
guaranteed by the continuity of λ 7→ gλ(r). In the case where
gλ(r) := max(r + λ, 0) as in the original paper, we have

λi =
∣∣∣ f̂ (xi) − yi

∣∣∣ − r̂(xi). (28)

Then, we compute the (1 − α)(1 + 1/n)-th empirical quantile of
(λi)n

i=1, denoted by λ(α). The random variables from which λi and
λ(α) are drawn are respectively denoted by Λi and Λ(α). The latter
depends on the calibration set (Xi, Yi)n

i=1, but is independent of
X and Y. The term (1 + 1/n), which accounts for finite-sample
correction, imposes a lower bound for the target error rate: α ≥
1/(n + 1). To ease the flow of reading, we write Xn+1 := X and
Yn+1 := Y.

The following proposition, for which a proof is provided in
Appendix C, is a generalization of Theorem 1 by Romano et al.
(2019).

Proposition 1. If (Xi, Yi)n+1
i=1 are drawn exchangeably from an

arbitrary joint distribution, and if the conformity scores (Λi)n+1
i=1

are almost surely distinct, then,

α −
1

n + 1
≤ P

{
Y < ĈΛ(α) (X)

}
≤ α. (29)

As an example, i.i.d. random variables are exchangeable.
More generally, exchangeability implies identical distribution
but not necessarily independence. The almost-surely-distinct
condition on (Λi)n+1

i=1 implies that each conformity score is almost
surely distinct from {a, b}, indicating that the predictions can be
calibrated. The result stated in (29) includes a lower bound for
the probability of miscoverage; therefore, CQR avoids overcon-
servative prediction intervals whenever n is large enough.

3.2. Conformalized mass mapping

The CQR algorithm was initially designed for scalar regression.
In the context of mass mapping, where both inputs and outputs
are multidimensional, we propose applying CQR to each out-
put pixel individually. This idea was also exploited in a very re-
cent paper by Narnhofer et al. (2024), though it was limited to

Bayesian error quantification. In contrast, our method is a more
straightforward extension of the CQR algorithm to inverse prob-
lems, which does not restrict to the Bayesian framework. To the
best of our knowledge, this direction has not been explored be-
fore.

Similarly to Sect. 2.2, we denote by κ̂− and κ̂+ the initial
lower- and upper-confidence bounds, obtained using any mass
mapping method and any UQ approach. The random vectors
from which they are drawn are written K̂

−
, and K̂

+
. We also de-

note by

κ̂ :=
κ̂− + κ̂+

2
and r̂ :=

κ̂+ − κ̂−

2
(30)

the corresponding point estimate and residual.2 We consider a
calibration set (γi, κi)n

i=1, drawn from i.i.d. random pairs of shear
and convergence maps (Γi, Ki)n

i=1 following the same distribution
as (Γ, K). We will explain in Sect. 4.1 how to get such a calibra-
tion set. Then, for each pixel k ∈ {1, . . . ,K2}, we apply CQR
such as described in Sect. 3.1 with CK2

as input space I, and

x := γ, y := κ[k], (xi, yi)n
i=1 := (γi, κi[k])n

i=1. (31)

The conformity scores and well as the resulting calibration pa-
rameters are gathered into n score vectors λi ∈ R

K2
, and a cali-

bration vector λ(α)
∈ RK2

. We denote by κ̂−cqr and κ̂+cqr the lower-
and upper-bounds obtained by calibrating the initial bounds κ̂−
and κ̂+ pixelwise:

κ̂−cqr := κ̂ − gλ(α) (r̂) and κ̂+cqr := κ̂ + gλ(α) (r̂), (32)

where we have defined, for any calibration vector λ ∈ RK2
, any

residual r ∈ RK2
, and any pixel k ∈ {1, . . . ,K2},

gλ(r)[k] := gλ[k](r[k]), (33)

for a given scalar calibration function gλ, as introduced in (23).
Now, we denote by Λi, Λ(α), K̂

−

cqr, and K̂
+

cqr the random vec-
tors from which λi, λ(α), κ̂−cqr, and κ̂+cqr are drawn, respectively. We
assume that the conformity scores (Λi[k])n+1

i=1 are almost surely
distinct, for each pixel k. Then, by averaging over all pixels, (29)
yields the following result:

α −
1

n + 1
≤ E

[
L
(
K, K̂

−

cqr, K̂
+

cqr

)]
≤ α, (34)

where we have defined the imagewise miscoverage rate:

L(κ, κ̂−, κ̂+) :=
card

{
k ∈ M : κ[k] <

[
κ̂−[k], κ̂+[k]

]}
cardM

, (35)

whereM ⊂ {1, . . . ,K2} denotes a set of active pixels. More de-
tails on masked data are provided in Appendix A.4.

2 This point estimate may differ from the one obtained in (17) within
the Bayesian framework, because the CQR algorithm presented in this
paper requires equally sized lower and upper residuals. Although Ro-
mano et al. (2019) proposed an asymmetric version of their algorithm,
it tends to increase the length of prediction intervals.
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3.3. Risk-controlling prediction sets

In this section, we present an alternative calibration approach
based on risk-controlling prediction sets (RCPS). Initially de-
veloped by Bates et al. (2021) in the context of classification,
it was later extended to inverse problems (Angelopoulos et al.
2022b) and diffusion models (Horwitz & Hoshen 2022; Teneggi
et al. 2023). Relying on Hoeffding’s inequality (Boucheron
et al. 2004), this approach also provides distribution-free, finite-
sample coverage guarantees with user-prescribed confidence
levels. In contrast to CQR, RCPS aims at controlling the risk
of statistical anomalies in the calibration set. However, it does
not prevent overconservative confidence intervals.

We consider a family of calibration functions gλ : R+ → R+
as introduced in Sect. 3.1. Then, for a given parameter λ ∈ R, we
consider the adjusted bounds κ̂−λ and κ̂+λ satisfying

κ̂−λ := κ̂ − gλ(r̂) and κ̂+λ := κ̂ + gλ(r̂). (36)

Considering the corresponding random vectors K̂
−

λ and K̂
+

λ , we
define the risk Rλ as the expected miscoverage rate:

Rλ := E
[
L
(
K, K̂

−

λ , K̂
+

λ

)]
, (37)

where L(κ, κ̂−, κ̂+) have been defined in (35). We seek the small-
est value λ satisfying Rλ ≤ α with some confidence guarantees.
For this purpose, we consider a calibration set (γi, κi)n

i=1 as intro-
duced in Sect. 3.2. For a given error level δ ∈ ]0, 1[, we compute
Hoeffding’s upper-confidence bound of Rλ, defined by

R+δ, λ
(
(γi, κi)n

i=1

)
:=

1
n

n∑
i=1

L
(
κi, κ̂

−
i, λ, κ̂

+
i, λ

)
+

√
− log δ

2n
, (38)

where κ̂−i, λ and κ̂+i, λ satisfy (36) with κ̂ := κ̂i and r̂ := r̂i. These
estimates are obtained from γi with the same method used to
compute κ̂ and r̂. The RCPS approach is based on the following
property, derived from Hoeffding’s inequality:

P
{
R+δ, λ

(
(Γi, Ki)n

i=1

)
< Rλ

}
≤ δ. (39)

It controls the risk of underestimating the expected miscoverage
rate by computing an empirical estimate on the calibration set.

We consider the following calibration parameter, computed
on the calibration set:

λ(α, δ) := inf
{
λ ∈ R : R+δ, λ

(
(γi, κi)n

i=1

)
< α

}
, (40)

and the corresponding random vector Λ(α, δ). By construction,
the functions λ 7→ Rλ and λ 7→ R+δ, λ

(
(γi, κi)n

i=1
)

are mono-
tone and non-increasing. Furthermore, we assume that the set
{λ ∈ R : Rλ ≤ α} is non-empty. Then, the following result has
been proven by Bates et al. (2021), using (39):

P
{
RΛ(α, δ) > α

}
≤ δ. (41)

Now, we consider the calibrated bounds with respect to λ(α, δ):

κ̂−rc := κ̂−
λ(α, δ) and κ̂+rc := κ̂+

λ(α, δ) , (42)

where κ̂−
λ(α, δ) and κ̂+

λ(α, δ) satisfy (36). The corresponding random
vectors are denoted by K̂

−

rc and K̂
+

rc, respectively. The random
variable Λ(α, δ) only depends on the calibration set (Γi, Ki)n

i=1, and
therefore is independent of the miscoverage rate L

(
K, K̂

−

λ , K̂
+

λ

)
,

for any λ ∈ R. Consequently, the risk Rλ defined in (37) can be
expressed as follows:

Rλ = E
[
L
(
K, K̂

−

Λ(α, δ) , K̂
+

Λ(α, δ)

) ∣∣∣ Λ(α, δ) = λ
]

(43)

= E
[
L
(
K, K̂

−

rc, K̂
+

rc

) ∣∣∣ Λ(α, δ) = λ
]
. (44)

Finally, plugging (44) into (41) yields the following coverage
guarantee for RCPS:

P
{
E
[
L
(
K, K̂

−

rc, K̂
+

rc

) ∣∣∣ Λ(α, δ)
]
> α

}
≤ δ. (45)

3.4. Differences between CQR and RCPS

The theoretical coverage guarantees provided by the CQR and
RCPS algorithms, respectively, (34) and (45), present some fun-
damental differences. First, only CQR prevents overconservative
solutions, due to the lower bound in (34). Moreover, in both
cases, there exists a nonzero probability of accidentally select-
ing an out-of-distribution calibration set, leading to miscalibra-
tion and potentially large error rates. This possibility does not
contradict the theoretical guarantees of either CQR or RCPS,
because both approaches treat the calibration set as a set of ran-
dom vectors. However, they handle this situation differently: the
expected miscoverage rate is evaluated over the full distribution
of calibration sets in the case of CQR, and conditionally on the
calibration parameter Λ(α, δ)—which depends on the calibration
set (Γi, Ki)n

i=1—in the case of RCPS. Consequently, unlike CQR,
the risk of miscalibration due to selecting a too-small calibration
parameter is explicit in (45), and is controlled by the parameter
δ. Therefore, RCPS provides a higher degree of control over un-
certainties. However, as confirmed by our experiments, it tends
to produce more conservative prediction bounds than CQR, even
for large values of δ.

Finally, it is worth noticing that mass mapping with CQR,
described in Sect. 3.2, requires K2 calibration parameters gath-
ered in the vector λ(α), which can be computed efficiently using
linear algebra libraries such as NumPy and SciPy in Python. In
contrast, the approach based on RCPS, described in Sect. 3.3,
only requires one scalar calibration parameter λ(α, δ).

3.5. Differences with uncalibrated coverage guarantees

By averaging over the setM of active pixels, the target coverage
guarantees before calibration—(3) for the frequentist framework
and (15) for the Bayesian framework—become, respectively,

E
[
L
(
κ, K̂

−
, K̂
+)]
≤ α (46)

and

Eµ
[
L
(
K, K̂

−
, K̂
+) ∣∣∣ Γ = γ] ≤ α, (47)

where the conditional expected value Eµ
[
· | Γ = γ

]
is defined with

respect to the posterior density fµ(κ |γ) introduced in (13). In ei-
ther (34) and (45), the expected miscoverage rate is evaluated
over the full distribution of convergence maps, in contrast with
(46) or (47), where it is taken conditionally on a single ground
truth κ (frequentist case) or observation γ (Bayesian case), re-
spectively. Consequently, the calibration procedures do not pre-
vent off-target miscoverage rates for specific images.
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Fig. 1: Distribution of redshifts used to combine simulated con-
vergence maps from the κTNG dataset.

4. Experiments

4.1. Experimental settings

4.1.1. Mass mapping methods

In this paper, we tested CQR and RCPS on three mass map-
ping methods introduced in Sect. 2.1—the KS inversion, the it-
erative Wiener algorithm, and MCALens. The uncalibrated un-
certainty bounds κ̂− and κ̂+ were computed using the frequen-
tist framework presented in Sect. 2.2.1. Specifically, for the KS
method, the bounds were obtained analytically using (11). In
contrast, for the Wiener and MCALens methods, the bounds
were computed using the Monte-Carlo method, by propagating
25 noise realizations through the pipeline for each input shear
map. The Python implementation of these algorithms is avail-
able on the CosmoStat GitHub repository: https://github.
com/CosmoStat/cosmostat.

4.1.2. Simulated convergence maps

In order to evaluate and compare the proposed methods, we
used a calibration set (γi, κi)n

i=1 of size n = 100 and a test set
(γi, κi)m

i=n+1 of size m − n = 125. The ground truths κi were
obtained using κTNG cosmological hydrodynamic simulations
(Osato et al. 2021), which include realizations of 5× 5 deg2 con-
vergence maps for various source redshifts at a 0.29 arcmin per
pixel resolution, assuming a flat ΛCDM Universe.

For our experiments, we considered linear combinations of
convergence maps according to a predefined redshift distribu-
tion, that we cropped to 306 × 306 pixels, with no overlap be-
tween them. This corresponds to an opening angle of 1.49 deg.
Formally, each convergence map κi can be expressed as follows:

κi =

nz∑
j=1

w j κi j, (48)

where (κi j)
nz
j=1 denotes a set of convergence map realizations at

nz = 40 source redshifts ranging from 3.45 × 10−2 to 2.57, and
w j ∈ [0, 1] denotes the weight assigned to the j-th source red-
shift z j. The weights (w j)

nz
j=1, which sum to 1, were chosen to

match the shape catalog used to compute the noisy shear maps
γi (see Sect. 4.1.3). The weight distribution is displayed in Fig. 1.

4.1.3. Noisy shear maps

In accordance with (1), to generate noisy shear maps γi from κi,
we applied the inverse Kaiser-Squires filter A and added a zero-
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Fig. 2: Number of galaxies per pixel using the S10 weak lensing
shear catalog (Schrabback et al. 2010). All redshifts have been
considered. The white borders delimitates the survey boundaries.
Even within boundaries, some data are missing due to survey
measurement masks.

mean Gaussian noise ni with a diagonal covariance matrix Σn
shared among all calibration and test input images. Its diagonal
values were obtained by binning the weak lensing shear catalog
created by Schrabback et al. (2010) (referred to as “S10”, fol-
lowing Remy et al. 2023) at the κTNG resolution (0.29 arcmin
per pixel), and then applying (A.14). The intrinsic standard devi-
ation σell was estimated from the measured ellipticities, and set
to 0.28. This is a reasonable estimation, assuming that the shear
dispersion is negligible with respect to the dispersion of intrinsic
ellipticities. The corresponding number of galaxies per pixel is
represented in Fig. 2.

The S10 catalog was based on observations conducted by
the NASA/ESA Hubble Space Telescope targeting the COS-
MOS field (Scoville et al. 2007), as well as photometric redshift
measurements from Mobasher et al. (2007). It contains an av-
erage of 32 galaxies per square arcminute over a wide range of
redshifts, which is consistent with what is expected from forth-
coming surveys like Euclid. This number excludes the galaxies
with redshifts below 3.45 × 10−2 and above 2.57, for the sake of
consistency with the κTNG dataset. It also ignores the inactive
pixels k < M, without any observed galaxy. In these areas, we
have simply set the shear map values to 0, as explained in Ap-
pendix A.4. Consequently, we have omitted these regions from
our statistical analyses.

An example of simulated convergence map κi and corre-
sponding noisy shear map γi is provided in Fig. 3.

4.1.4. Reconstruction parameters

The Wiener estimate κ̂wien as well as the Gaussian component κ̂G
of MCALens have been computed with a power spectrum (diag-
onal elements of Pκ) empirically estimated from a dataset of 180
simulated convergence maps distinct from the calibration and
test sets. Moreover, the sparse component κ̂S of MCALens was
estimated using a starlet dictionary (Starck et al. 2007), which is
well-suited for isotropic objects. The detection threshold for se-
lecting the set of active wavelet coefficients was set to 4σ. This
threshold was selected based on visual evaluation, as it achieved
a good balance between effectively detecting peaks and mini-
mizing false positives. For both iterative methods, the number of
iterations was set to the default value of 12. This choice was mo-
tivated by seeking a tradeoff between reconstruction accuracy
and computational cost. Finally, the Kaiser-Squires maps were
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Fig. 3: Example of simulated convergence map (Fig. 3a), and the corresponding noisy shear map (Figs. 3b and 3c).

smoothed with a Gaussian filter S with a full width at half maxi-
mum (FWHM) of 2.4 arcmin, following Starck et al. (2021). To
test the effect of the low-pass filter on reconstruction accuracy
and error bar size, we also used a filter with half the original
FWHM. These are referred to as strong and weak smoothing,
respectively.

4.1.5. UQ parameters

We selected a target confidence level at 2σ, corresponding to
α ≈ 0.046. We notice that higher confidence levels require larger
calibration sets, due to the finite-sample correction: the CQR
algorithm selects the (1 − α)(1 + 1/n)-th empirical quantile of
the conformity scores, which, by definition, must remain below
100%. Consequently, a 2σ-confidence requires at least n = 21
calibration samples, versus n = 370 at 3σ and n = 15 787 at
4σ. Moreover, regarding the approach based on RCPS, we tested
three values for the error level: δ = 0.05, 0.2, and 0.5.

We implemented both approaches with several families of
calibration functions, which is a novel aspect of this work:

gλ : r 7→ max(r + λ, 0) (49)

as used by Romano et al. (2019), and

gλ : r 7→ λr (50)

as used by Angelopoulos et al. (2022b). The former increases
(or decreases) the size of the confidence intervals by the same
value λ regardless of the initial size 2r, whereas the latter adjusts
the size proportionally to its initial value. This choice may have
an influence on the average size of the calibrated confidence in-
tervals. To push the analysis further, we also tested calibration
functions with intermediate behaviors for the CQR approach, in
the form

gλ : r 7→ r + bFχ2(k)(r/a)(λ − 1), (51)

where Fχ2(k) denotes the cumulative distribution function of a
chi-squared distribution with k degrees of freedom, and a and
b denote positive real numbers. In practice, we tested values of
a ranging from 0.004 to 0.012, and adjusted b to the maximum
value such that gλ remains non-decreasing for any λ ≥ 0.

In the rest of the paper, the functions defined in (49), (50)
and (51), for which a visual representation is provided in Fig. 4,
are referred to as “additive”, “multiplicative”, and “chi-squared”
calibration functions, respectively.

4.2. Results

4.2.1. Visualization of reconstructed convergence maps

A visual example of reconstructed convergence map, together
with its prediction bounds before and after calibration, is pro-
vided in Fig. 5. A focus on the main peak-like structure is dis-
played in Fig. 9 for the Wiener and MCALens estimates, after
calibration with CQR.

We can observe that, for the KS and Wiener methods, the
high-density region (bright spot in the convergence map) falls
outside the confidence bounds, even after calibration (it is actu-
ally under-estimated). This is not in contradiction with the theo-
retical guarantees stated in (29) and (45), because the expected
miscoverage rate, computed across the whole set M of active
pixels, remains below the target α, as explained in Sect. 4.2.3.
However, these guarantees do not tell anything about the mis-
coverage rate of the higher-density regions specifically. A more
detailed discussion on this topic is provided in Sect. 5.3.

In contrast, MCALens correctly predicts the high-density re-
gion. This observation is consistent with the fact that this algo-
rithm was designed to accurately reconstruct the sparse compo-
nent of the density field.

4.2.2. Reconstruction accuracy

In order to reproduce previously-established results, we mea-
sured, for each i ∈ {n + 1, . . . ,m} in the test set, the root mean
square error (RMSE) between the ground truth κi and recon-
structed convergence maps κ̂ks i, κ̂wien i and κ̂mcal i, corresponding
to the KS, Wiener and MCALens solutions, respectively. These
metrics were computed on the set M of active pixels, that is,
within the survey boundaries, and for pixels with nonzero galax-
ies. We also measured the RMSE for high-density regions only,
which are of greater importance when inferring cosmological pa-
rameters. More precisely, we only considered the pixels k such
that |κi[k]| ≥ 4.8 × 10−2, which corresponds to a signal-to-noise
(S/N) ratio above 0.25 (2.8% of the total number of pixels). The
results are displayed in Table 1.

These results confirm that the Wiener and MCALens solu-
tions achieve higher reconstruction accuracy compared to the
KS solution, although the latter can be improved by increasing
the standard deviation of the smoothing filter (see “KS1” versus
“KS2”). Additionally, MCALens outperforms Wiener by 1.6%.
This difference significantly increases when focusing on high-
density regions (6.3% improvement).
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Fig. 4: Examples of families (gλ)λ of calibration functions. In Fig. 4a (additive calibration), λ ranges from −∞ to +∞ with λ0 = 0,
whereas in Figs. 4b (multiplicative calibration) and 4c (chi-squared calibration), λ ranges from 0 to +∞ with λ0 = 1. In Fig. 4c, the
number k of degrees of freedom is set to 3, the scaling factor a is set to 0.01, and the multiplicative factor b is set to the maximum
value such that gλ remains non-decreasing for any λ ≥ 0, i.e., b ≈ 0.041.

Table 1: Reconstruction accuracy

RMSE (×10−3)

Extent KS1 KS2 Wiener MCALens

All pixels 31.8 ± 0.5 21.1 ± 0.8 18.3 ± 1.2 18.0 ± 1.0

High-density 60.1 ± 2.6 66.8 ± 2.9 72.3 ± 3.0 67.7 ± 2.9

Note. The RMSE is computed between each ground truth con-
vergence map κi and the corresponding reconstruction κ̂i. The
empirical means and standard deviations are computed over the
test set (γi, κi)m

i=n+1 for each mass mapping method, and reported
in this table. “KS1” and “KS2” correspond to the Kaiser-Squires
estimators with weak and strong smoothing, respectively. The
second row focuses on pixels k such that |κi[k]| ≥ 4.8 × 10−2.

4.2.3. Miscoverage rate

For each i ∈ {n + 1, . . . ,m} in the test set, we have measured the
empirical miscoverage rate L(κi, κ̂

−
i , κ̂

+
i ) such as introduced in

(35), where the (uncalibrated) lower- and upper-bounds κ̂−i and
κ̂+i have been computed following (9), using each of the three
reconstruction methods. Then, after calibrating the bounds us-
ing CQR and RCPS on the calibration set (γi, κi)n

i=1, we have
computed L

(
κi, κ̂

−
cqr i, κ̂

+
cqr i

)
and L

(
κi, κ̂

−
rc i, κ̂

+
rc i

)
on the test set

(γi, κi)m
i=n+1. Finally, we compared the results with the theoret-

ical guarantees stated in (34) and (45), respectively. The results
are reported in Table 2, and plotted in Fig. 6.

In the case of CQR, the empirical mean of the miscoverage
rate falls between the theoretical bounds (yellow area). This is
in line with the theoretical guarantee stated in (34). We also no-
tice that the lower bound seems overly conservative. It should
be noted that the expected value from (34) covers uncertainties
over the convergence map K, the noise N, but also the calibra-
tion set (Γi, Ki)n

i=1. In our experiments, we only considered one
realization (γi, κi)n

i=1 of the calibration set, which, as explained
in Sect. 3.4, may result in miscalibration and above-target error
rates. This effect could be mitigated by increasing the size n of
the calibration set, or with bootstrapping.

Unlike CQR, the RCPS approach controls the risk of picking
a statistically-deviant calibration set, which could lead to under-
coverage, by introducing an additional parameter δ. However,
even with large values of δ, the calibrated bounds tend to be
overly conservative. For example, with δ = 0.5, one would ex-

pect the average miscoverage rate to fluctuate around the target α
in approximately 50% of experiments when repeating the proto-
col with different calibration sets. In practice, the computed mis-
coverage rates consistently fall well below the target. Contrary
to CQR, RCPS does not prevent situations of overcoverage.

4.2.4. Mean length of prediction intervals

The mean length of the prediction intervals has been computed
over each image in the test set, before and after calibration, for
each mass mapping method, each calibration method (CQR and
RCPS), and each family of calibration functions. The results are
reported in Table 2, and plotted in Fig. 7.

We observe that the choice of mass mapping method influ-
ences the size of the confidence intervals. Specifically, the KS
solution yields larger calibrated error bars than either the Wiener
or MCALens solutions, particularly in the weak-smoothing sce-
nario (“KS1”). Additionally, the smallest confidence intervals
are obtained with MCALens, using CQR with the additive fam-
ily of calibration functions (in bold in Table 2). This family con-
sistently produces equal or smaller confidence intervals com-
pared to the multiplicative or chi-squared families, for both CQR
and RCPS calibration procedures. The modest improvement of
the MCALens solution compared to Wiener (0.24% reduction in
the mean length) can be attributed to the overall similarity be-
tween MCALens and Wiener outputs, with MCALens demon-
strating higher reconstruction accuracy only in a few peak-like
structures, which are essential for inferring cosmological param-
eters. Consequently, averaging the results over all pixels tends to
hide essential properties of MCALens. A more detailed discus-
sion on high-density regions is provided in Sect. 5.3.

As explained above, RCPS produces overly conservative
bounds, which has a strong impact on the size of the confidence
intervals. Smaller confidence intervals could be obtained by in-
creasing the size n of the calibration set, since the Hoeffding’s
upper-confidence bound (38) decreases with increased values of
n. Therefore, CQR seems more appropriate if the computational
resources or available data are limited.

5. Discussion

5.1. Distribution-free vs Bayesian uncertainties

Extending distribution-free UQ to data-driven mass mapping
methods (see Sect. 2.1) is straightforward, provided one has ac-
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Table 2: UQ metrics: miscoverage rate and mean length of prediction intervals

Miscoverage rate (%) Mean length of pred. intervals (×10−2)

Type of calibration KS1 KS2 Wiener MCALens KS1 KS2 Wiener MCALens

Uncalibrated 6.94 ± 0.39 16.36 ± 1.09 36.04 ± 1.93 35.53 ± 1.89 11.43 ± 0.00 5.28 ± 0.00 2.65 ± 0.02 2.68 ± 0.02

CQR

Add. 4.49 ± 0.31 4.53 ± 0.53 4.52 ± 0.61 4.52 ± 0.55 12.94 ± 0.00 8.33 ± 0.00 7.15 ± 0.02 7.13 ± 0.02

Mult. 4.49 ± 0.31 4.53 ± 0.53 4.53 ± 0.60 4.51 ± 0.53 12.94 ± 0.00 8.33 ± 0.00 7.39 ± 0.04 7.35 ± 0.06

χ2, a = 0.004 4.49 ± 0.31 4.53 ± 0.53 4.53 ± 0.60 4.51 ± 0.54 12.94 ± 0.00 8.33 ± 0.00 7.31 ± 0.04 7.26 ± 0.05

χ2, a = 0.006 4.49 ± 0.31 4.53 ± 0.53 4.53 ± 0.60 4.51 ± 0.53 12.94 ± 0.00 8.33 ± 0.00 7.38 ± 0.04 7.33 ± 0.06

χ2, a = 0.008 4.49 ± 0.31 4.53 ± 0.53 4.53 ± 0.60 4.51 ± 0.53 12.94 ± 0.00 8.33 ± 0.00 7.42 ± 0.05 7.37 ± 0.06

χ2, a = 0.010 4.49 ± 0.31 4.53 ± 0.53 4.53 ± 0.60 4.51 ± 0.53 12.94 ± 0.00 8.33 ± 0.00 7.45 ± 0.05 7.40 ± 0.07

χ2, a = 0.012 4.49 ± 0.31 4.53 ± 0.53 4.53 ± 0.60 4.51 ± 0.53 12.94 ± 0.00 8.33 ± 0.00 7.48 ± 0.05 7.42 ± 0.07

RCPS

δ = 0.05
Add. 1.00 ± 0.13 1.05 ± 0.18 1.04 ± 0.21 1.04 ± 0.17 16.72 ± 0.00 12.45 ± 0.00 12.56 ± 0.02 12.26 ± 0.02

Mult. 1.01 ± 0.13 1.05 ± 0.18 1.04 ± 0.20 1.03 ± 0.16 16.76 ± 0.00 12.61 ± 0.00 13.21 ± 0.08 12.75 ± 0.12

δ = 0.20
Add. 2.01 ± 0.20 2.05 ± 0.30 2.06 ± 0.33 2.06 ± 0.30 14.87 ± 0.00 10.05 ± 0.00 9.47 ± 0.02 9.35 ± 0.02

Mult. 2.01 ± 0.20 2.05 ± 0.30 2.06 ± 0.33 2.05 ± 0.28 14.90 ± 0.00 10.15 ± 0.00 9.90 ± 0.06 9.71 ± 0.09

δ = 0.50
Add. 3.00 ± 0.25 3.06 ± 0.41 3.08 ± 0.45 3.07 ± 0.41 13.79 ± 0.00 8.96 ± 0.00 7.91 ± 0.02 7.88 ± 0.02

Mult. 3.01 ± 0.25 3.06 ± 0.40 3.09 ± 0.45 3.06 ± 0.39 13.80 ± 0.00 9.03 ± 0.00 8.30 ± 0.05 8.23 ± 0.07

Note. The metrics are computed for each mass mapping method, before and after calibration, for various error levels δ (RCPS only),
and various families of calibration functions (gλ)λ. “Add.” and “Mult.” refer to the families defined in (49) and (50), respectively,
whereas “χ2” refers to the chi-squared family defined in (51), with k = 3 degrees of freedom. The multiplicative factor b, which
depends on the scaling factor a, is set to the maximum value such that gλ remains non-decreasing for any λ ≥ 0. “KS1” and “KS2”
correspond to the Kaiser-Squires estimators with weak and strong smoothing, respectively. The miscoverage rate (35) as well as
the length of the prediction intervals are averaged over the setM of active pixels, for each pair

(
γi, κi

)
. The empirical mean and

standard deviation of each metric is then computed over the test set (γi, κi)m
i=n+1, and displayed in this table.
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Fig. 6: Empirical miscoverage rate after calibration with CQR (Fig. 6a) and RCPS (Fig. 6b). The means and standard deviations are
computed over the test set (γi, κi)m

i=n+1, for various error levels δ (RCPS only), and various families of calibration functions (gλ)λ.
More details are provided in the note of Table 2. The theoretical bounds for CQR, introduced in (34), are represented by the yellow
area in Fig. 6a. These plots indicate that CQR achieves miscoverage rates that are, on average, close to the target α, whereas RCPS
tends to produce overconservative bounds, even for large values of δ.

cess to a “first guess”, an initial quantification of uncertainty.
Such initial uncertainty bounds can be obtained following the
Bayesian framework presented in Sect. 2.2.2, which provides
theoretical guarantees similar to (47).

However, as explained in Sect. 2.2.3, this heavily relies on a
proper choice of the prior distribution µ, and if the latter differs
from the unknown oracle distribution µ∗, the empirical mean of
the miscoverage rate, computed over the test set, may signifi-

cantly diverge from (47). Applying a post-processing calibration
step, such as CQR or RCPS, allows for obtaining the guarantees
stated in (34) or (45), respectively. In these expressions, the ex-
pected value assumes K ∼ µ∗, even though the underlying distri-
bution µ∗ remains implicit—hence the term “distribution-free”.
The only sufficient conditions for these properties to be satisfied
are that the data from the calibration and test sets (Γi, Ki)m

i=1 are
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Fig. 7: Mean values for the lower and upper confidence bounds, computed over the span of each image. The bar sizes represent the
mean length of the error bars. As in Fig. 6, the values are computed over the test set (γi, κi)m

i=n+1, for various families of calibration
functions (gλ)λ. After calibration with CQR, the choice of mass mapping method does not influence the average miscoverage rate
(Fig. 6a), but significantly affects the size of the error bars (Fig. 7a). Additionally, RCPS, which tends to produce overconservative
prediction bounds (Fig. 6b), yields larger error bars than CQR (Fig. 7b vs 7a).

exchangeable, and that the conformity scores are almost surely
distinct.

5.2. Beyond pixelwise uncertainty

This paper focuses on estimating error bars per pixel. While this
approach is easily interpretable, it lacks some essential proper-
ties. First, it is important to consider the purpose of mass map-
ping and the type of information required. For instance, to infer
cosmological parameters, several studies have proposed using
peak counts (Kratochvil et al. 2010; Marian et al. 2013; Shan
et al. 2014; Liu et al. 2015), convolutional neural networks that
exploit information in the gradient around peaks (Ribli et al.
2019a,b), or neural compression of peak summary statistics (Jef-
frey et al. 2021). Consequently, regions of higher density are of
particular interest and should be treated with special attention.

In this context, alternative UQ schemes could be considered.
Among these are the Bayesian hypothesis testing of structure
(Cai et al. 2018a,b; Repetti et al. 2019; Price et al. 2021), which
can assess whether a given structure in an image is a reconstruc-
tion artifact or has some physical significance. Additionally, a
computationally efficient approach, based on wavelet decompo-
sition and thresholding of the MAP reconstruction, has been re-
cently proposed by Liaudat et al. (2023). This method estimates
errors at various scales, highlighting the different structures of
the reconstructed image. In fact, these ideas can be traced back
to earlier work in the stochastic geometry literature (see, e.g., the
book by Adler & Taylor 2007), with applications in neuroimag-
ing (e.g., Fadili & Bullmore 2004). Another potential direction is
the application of calibration procedures to blob detection (Lin-
deberg 1993), for which UQ methods have been recently devel-
oped by Parzer et al. (2023, 2024).

Another drawback of pixelwise UQ is that it does not ac-
count for correlations between pixels. For instance, whether a
given pixel has been accurately predicted can impact the uncer-
tainty bounds of the neighboring pixels, a property not reflected
in per-pixel error bars. This concern intersects with the previous
one, as it raises the question of correctly identifying the struc-
tures of interest in the reconstructed image, which typically span
several pixels. To address this issue, Belhasin et al. (2023) pro-

posed applying UQ after decomposing the reconstructed images
through principal component analysis. They also applied RCPS
in this context, demonstrating that calibration methods can be
used beyond the per-pixel framework.

5.3. Focus on higher-density regions

As confirmed by our experiments, CQR provides guarantees on
the miscoverage rate L(κ, κ̂−, κ̂+) defined in (35). However, this
score is computed by considering all active pixels k ∈ M. This
may hide disparities caused by latent factors such as the local
density of the convergence field. To support this claim, we com-
puted the miscoverage rate filtered on regions of higher density.
More precisely, for any i ∈ {n + 1, . . . ,m}, we only considered
pixels k such that |κi[k]| ≥ t for a given threshold t ∈ R, set to
4.8 × 10−2 in our experiments (S/N ratio above 0.25), similarly
to Sect. 4.2.2. The corresponding metric is defined by

Lt(κ, κ̂−, κ̂+) :=
card

{
k ∈ Mt(κ) : κ[k] <

[
κ̂−[k], κ̂+[k]

]}
cardMt(κ)

, (52)

with

Mt(κ) :=
{
k ∈ M : κ[k] ≥ t

}
. (53)

The results, displayed in Fig. 8, indicate that the filtered miscov-
erage rate remains well above the target α, even after calibration
with CQR. This phenomenon can also be visualized in Fig. 9 for
the Wiener method: the bright area remains underestimated.

As highlighted in Sect. 5.2, these high-density regions are
important for inferring cosmological parameters. Therefore, the
method could be improved by incorporating this additional con-
straint. An interesting direction involves conformal prediction
masks, as introduced by Kutiel et al. (2023). The method con-
sists of masking the regions of low uncertainty in a given im-
age, allowing a focus on the regions of higher uncertainty—
corresponding to high-density regions in the case of weak lens-
ing mass mapping.

Fig. 10 presents a scatter plot summarizing the various
metrics discussed in this study. It indicates that Wiener and
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Fig. 8: Empirical miscoverage rate after calibration with CQR,
computed on regions of higher density. Following Sect. 4.2.2,
only pixels k with |κi[k]| ≥ t = 4.8 × 10−2 were considered. Un-
like in Fig. 6a, where the miscoverage rate is computed over all
pixels, the measured values in this case deviate drastically from
the target. Consequently, the size of the error bars is underesti-
mated in these areas.

(a) Wiener

(b) MCALens

Fig. 9: Lower and upper bounds after calibration with CQR,
with a focus on a peak-like structure. See Fig. 5 for more de-
tails. In the Wiener solution, the ground truth κ[k] remains above
κ̂+[k] (miscoverage), whereas MCALens provides better cover-
age. This observation aligns with Fig. 8.

MCALens show similar error bar size and RMSE when com-
puted across the entire setM of active pixels. From these met-
rics’ perspective, both methods outperform the KS estimators.
However, when focusing on high-density regions, the Wiener
solution exhibits poorer performance in terms of reconstruction
accuracy (RMSE) and miscoverage rate, compared to MCALens
and KS. As a result, MCALens achieves a balance between
overall and high-density-specific performance. Additionally, the
choice of smoothing filter significantly influences the reconstruc-
tion accuracy and error bar size of the KS estimator.
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Fig. 10: Mean length of prediction intervals (Sect. 4.2.4) plot-
ted against RMSE (Sect. 4.2.2), both before and after calibra-
tion using additive CQR, with and without filtering on high-
density regions. Marker colors indicate empirical miscoverage
rates (Sect. 4.2.3). The coverage guarantee (34) applies only af-
ter calibration (blue diamonds atop the solid lines). We notice
that, when filtering on high-density regions, the coverage prop-
erty no longer holds (pink diamonds atop the dashed lines).

6. Conclusion

In this work, we emphasized the need for adjusting uncer-
tainty estimates for reconstructed convergence maps, whether
computed through frequentist or Bayesian frameworks. To ad-
dress this, we built on two recent distribution-free calibration
methods—conformalized quantile regression (CQR) and risk-
controlling prediction sets (RCPS)—to obtain error bars with
valid coverage guarantees.

This paper presents several key innovations. First, while
RCPS has been applied to inverse problems in other contexts,
CQR was originally designed for scalar regression and required
adaptation for this specific application. Second, no prior work
has compared the two methods directly. Finally, we investigated
various families of calibration functions for both approaches.

Our experiments led to three key findings. First, RCPS tends
to produce overconservative confidence intervals, whereas CQR
allows for more accurate—and smaller—error bars. Second, the
choice of mass mapping method significantly influences the size
of these error bars: a 45% reduction for MCALens compared to
KS with weak smoothing, a 14% reduction compared to KS with
strong smoothing, and a 0.24% reduction compared to Wiener.
Finally, this choice also affects the reconstruction accuracy, espe-
cially around peak-like structures, where MCALens outperforms
Wiener by 6.3%.

We emphasize that these calibration approaches are not lim-
ited to the model-driven mass mapping methods discussed in this
paper; they are applicable to any mass mapping method, includ-
ing those based on deep learning.

To conclude and guide future research, we acknowledge sev-
eral limitations of this study. First, particular attention must be
given to the intensity of peak-like structures, which are essen-
tial for inferring cosmological parameters. As it stands, neither
of the two calibration methods effectively prevents miscoverage
in these high-density regions. Additionally, this work could be
expanded to include a broader range of uncertainty estimates be-
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yond per-pixel error bars. Finally, the calibration and resulting
uncertainty bounds were derived for a specific set of cosmologi-
cal parameters. While we postulate that variations in cosmology
have only a marginal impact on the results, this hypothesis needs
further investigation.

To ensure reproducibility, all software, scripts, and note-
books used in this study are available on GitHub: https://
github.com/hubert-leterme/weaklensing_uq.git.
Acknowledgements. This work was funded by the TITAN ERA Chair project
(contract no. 101086741) within the Horizon Europe Framework Program of the
European Commission, and the Agence Nationale de la Recherche (ANR-22-
CE31-0014-01 TOSCA and ANR-18-CE31-0009 SPHERES).
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Appendix A: Mass mapping: problem formulation

The following formalism has been outlined by Kilbinger (2015).

A.1. Weak lensing and mass mapping

Consider a light ray emitted by an extended source (typically, a
galaxy), observed at coordinates θ ∈ R2 in the sky. In the pres-
ence of (inhomogeneous) matter density that we seek to esti-
mate, the light ray undergoes continuous deflection as it travels
through space, a phenomenon known as gravitational lensing.
In the absence of lensing, it would be seen by the observer at
coordinates β(θ). Assuming deflections are small enough (weak
lensing regime), one can write

β(θ) = θ − ∇ψ(θ), (A.1)

where ψ : R2 → R denotes a lensing potential. Now, consider
another light ray emitted by the same galaxy, observed at coor-
dinates θ + δθ. A first-order approximation yields

β(θ + δθ) − β(θ) = J(θ) · δθ, (A.2)

where the Jacobian J : R2 → R2×2 (also referred to as amplifica-
tion matrix) satisfies

J :=

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

 = (1− κ)

1 − g1 −g2

−g2 1 − g1

 , (A.3)

where we have introduced the fields κ, γ1, γ2 : R2 → R such
that

κ := 1
2 (∂2

1ψ + ∂
2
2ψ); γ1 := 1

2 (∂2
1ψ − ∂

2
2ψ); γ2 := ∂1∂2ψ, (A.4)

and gi := γi/(1 + κ), i = 1, 2. For any θ ∈ R2, κ(θ) ∈ R, re-
ferred to as the convergence, translates into an isotropic dilation
of the source, and γ(θ) := γ1(θ) + iγ2(θ) ∈ C, referred to as the
shear, causes anisotropic stretching of the image, typically trans-
forming a circle into an ellipse. Finally, g(θ) := g1(θ) + ig2(θ) is
referred to as the reduced shear.

The goal is now to estimate the projected mass between the
observer and the observed galaxies in any direction. In the weak
lensing regime, it can be shown that the convergence κ(θ) is
roughly proportional to the (weighted) matter density projected
along the line of sight between the observer and the source.
Therefore, mass mapping can be performed by estimating the
convergence map κ : R2 → R from the observation of galaxies
at a given redshift.

A.2. Relationship between shear and convergence

Although not directly measurable, κ can be retrieved from the
shear γ, up to an additive constant. In the flat sky limit, solving
the PDEs (A.4) yields the following relationship in the Fourier
space:

∀ν , 0, γ̃(ν) =
1
π
D̃(ν) κ̃(ν), with D̃ : ν 7→ π

(ν1 + iν2)2

ν2
1 + ν

2
2

. (A.5)

Denoting by F the Fourier transform operator, this yields

γ(θ) =
1
π
F −1

(
D̃κ̃

)
(θ). (A.6)

Now, we discretize (A.6) on a square grid of size K2 ∈ N,
and adopt a vector-matrix notation in which the shear and con-
vergence maps γ ∈ CK2

and κ ∈ RK2
are flattened and thus repre-

sented as one-dimensional vectors. By neglecting discretization
and boundary effects, we get the following relation:

γ = Aκ + γ0, with A := F∗PF, (A.7)

where F and its Hermitian transpose F∗ ∈ CK2×K2
respectively

encode the discrete Fourier and inverse Fourier transforms, and
P ∈ CK2×K2

is a diagonal matrix obtained by discretizing D̃/π on
the same grid: for any (k1, k2) , (0, 0),

P
[
K2k1 + k2, K2k1 + k2

]
:=

(k1 + ik2)2

k2
1 + k2

2

. (A.8)

The constant γ0 := ⟨γ⟩ ∈ C (mean value of the shear map) ac-
counts for the fact that D̃ is discontinuous in 0, thereby leaving
P[0, 0] undefined when discretizing (mass-sheet degeneracy). In
practice, we therefore set P[0, 0] = 0 and add this constant to the
equation.

Due to mass-sheet degeneracy, the operator A is not invert-
ible. Therefore, assuming the shear map γ is known, the conver-
gence map κ can only be retrieved up to an additive constant:

κ = A†γ + κ0, with A† := F∗P†F, (A.9)

where κ0 := ⟨κ⟩ ∈ R denotes the mean value of the conver-
gence map, and P† ∈ CK2×K2

denotes a diagonal matrix defined
by P†[0, 0] := 0 and, for all k , 0, by P†[k, k] := P[k, k]−1. In
practice, we will therefore estimate the variations of κ around its
mean value.

A.3. Shear measurement

The intrinsic ellipticity of a galaxy is characterized by a com-
plex number ϵ s ∈ C. In the weak lensing regime, the observed
ellipticity ϵ approximately satisfies

ϵ = g + ϵ s, (A.10)

where, as a reminder, g ∈ C denotes the reduced shear, which
varies with the galaxy coordinates θ. A common approximation
in weak lensing is to consider κ ≪ 1, and therefore g ≈ γ.
In the remaining of the section, we will replace g by the unre-
duced shear γ. Assuming the intrinsic galaxy ellipticity has no
preferred orientation, the expected value of ϵ s vanishes, which
yields E[ϵ] = E[γ]. Therefore, the observed ellipticity ϵ is an
unbiased estimator of γ.

In practice, we consider a portion of the sky on which one
seek to perform mass mapping, which we subdivide into K2

small regions (or bins), each of which associated to a pixel in
the discretized shear map γ and convergence map κ. For each
bin k, we measure the ellipticity of Nk galaxies at a given red-
shift. Then, (A.10) yields

1
Nk

Nk∑
i=1

ϵk, i =
1

Nk

Nk∑
i=1

γk, i +
1

Nk

Nk∑
i=1

ϵ s
k, i, (A.11)

where γk, i denotes the shear, and ϵk, i and ϵ s
k, i respectively denote

the intrinsic and measured ellipticity of the i-th galaxy within the
k-th bin. Assuming that the bins are small enough to maintain an
approximate consistancy of the shear within each, we get

1
Nk

Nk∑
i=1

γk, i = γ[k]. (A.12)
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Moreover, we introduce

ϵ[k] :=
1

Nk

Nk∑
i=1

ϵk, i and n[k] :=
1

Nk

Nk∑
i=1

ϵ s
k, i, (A.13)

in which ϵ is an unbiased estimator of γ, and n is the realization
of a Gaussian noise with zero mean and diagonal covariance ma-
trix Σn ∈ C

K2×K2
, satisfying

Σn[k, k] = σell/
√

Nk, (A.14)

where σell ∈ C denotes the standard deviation of the intrinsic
ellipticities. In practice, this quantity is estimated by measuring
the standard deviation of the observed ellipticities across the sky.
In practice, the number of galaxies per bin may be quite small
(Nk ∼ 10), which yields a very low S/N ratio.

Then, combining (A.7) and (A.11)-(A.13) yields

ϵ = Aκ + n+ γ0. (A.15)

Since the noise n has zero-mean, we have γ0 ≈ ⟨ϵ⟩. Therefore,
by replacing the true unknown shear map by its unbiased estima-
tor, and after applying mean-centering: γ := ϵ − ⟨ϵ⟩, we get the
inverse problem stated in (1), for which we seek an estimation
of the convergence map κ.

A.4. Masked data

In practice, some data may be missing due to survey measure-
ment masks (for instance, limits of the galaxy survey or bright
stars in the foreground). We consider the set of “active” pixels,
denoted by

M :=
{
k ∈ {1, . . . ,K2} : Nk > 0

}
. (A.16)

A naive approach consists in setting to γ[k] = 0 for any k <M.
Then, if we assign n[k] to −Aκ[k] outsideM, (1) still holds, but n
can no longer be considered as a Gaussian noise. For the sake of
simplicity, in this paper, we nevertheless relied on this solution,
and assigned a very large noise variance Σn[k, k] for any k <M,
which is required for the Wiener and MCALens mass mapping
methods (see Sects. B.2 and B.3, respectively).

Another approach involves adding a Gaussian white noise n′
with large variance σ′2 to the masked pixels: γ[k] := n′[k] for
any k <M. Assuming the S/N ratio between Aκ and n′ is small
enough, we therefore approximately get (1), where the noise
variance is left unchanged for unmasked pixels, and is equal to
σ′2 in masked regions.

Because of noise and masked data, this inverse problem is
ill-posed. Therefore, mass-mapping methods generally rely on
prior assumptions to regularize the problem.

Appendix B: Mass mapping methods

In this section, we present the three mass mapping methods used
in our experiments.

B.1. Kaiser-Squires inversion

The Kaiser-Squires (KS) inversion (Kaiser & Squires 1993) con-
sists in a simple pseudo-inversion of the linear operator A. Ac-
cording to (A.9), in absence of noise and mask, it provides an

exact reconstruction of the true convergence map κ (up to an ad-
ditive constant). In practice, it is generally followed by a certain
amount of Gaussian smoothing:

κ̂ks := SA†γ, (B.1)

where S ∈ RK2×K2
encodes a Gaussian smoothing operator with

manually-tuned variance.
Note that, in absence of smoothing (S = I), the KS solution

corresponds to the maximum likelihood estimate of the conver-
gence map:

κ̂ks ∈ argminκ′
{
− log fΓ |K

(
γ | κ′

)}
(B.2)

= argminκ′
1
2

∥∥∥γ − Aκ′
∥∥∥2
Σ−1

n
, (B.3)

where fΓ |K(γ | κ′) denotes the likelihood density.

B.2. Iterative Wiener filtering

The KS inversion generally produces poor results because it is
very sensitive to noise and masked data. To overcome this lim-
itation, one introduce prior assumptions in the form of a regu-
larization term in the objective function. Considering κ as drawn
from a random variable with probability density function p, the
MAP estimate satisfies (19).

In the Wiener approach, we consider κ as a Gaussian field.
That is, it is drawn from a multivariate Gaussian distribution with
(non-diagonal) covariance matrix Σκ, and the covariance matrix
of its Fourier transform κ̃, denoted by Pκ := FΣκF∗, is diagonal.
Then, the distribution from which κ is drawn is entirely charac-
terized by its power spectrum. In this context, (19) becomes

κ̂wien ∈ argminκ′
{

1
2

∥∥∥γ − Aκ′
∥∥∥2
Σ−1

n
+

1
2

∥∥∥κ′∥∥∥2
Σ−1
κ

}
. (B.4)

By setting the gradient of the above expression to 0, we get

κ̂wien =
(
A∗Σ−1

n A + Σ−1
κ

)−1
A∗Σ−1

n γ. (B.5)

If the noise is not stationary, then computing (B.5) requires
two K2 × K2-matrix inversions, which is not feasible in prac-
tice. To overcome this, Bobin et al. (2012) proposed an itera-
tive algorithm converging toward (B.5), in the context of cosmic
microwave background (CMB) map restoration. Each iteration
consists in a two-step process: one step in the spatial domain and
one step in the Fourier domain. The algorithm takes advantage
of the fact that the covariance matrices Σn and Pκ are diagonal,
thereby avoiding large matrix inversions.

B.3. MCALens algorithm

In contrast to the CMB, matter distribution is actually poorly
approximated by Gaussian fields, due to the gravitational inter-
actions responsible for the formation of galaxies and large-scale
structures. In a more recent paper, Starck et al. (2021) suggested
that convergence maps can be represented as the superposition of
a Gaussian component, as in the Wiener solution, and a sparse
component in a wavelet dictionary, as in GLIMPSE2D:

κ̂mcal = κ̂G + κ̂S. (B.6)

The authors then proposed to use the morphological compo-
nent analysis (MCA) algorithm (Starck et al. 2005), consider-
ing that the Gaussian and sparse components are morphologi-
cally distinct (except for lower frequencies). They came along
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with an iterative algorithm called MCALens, where each iter-
ation is a two-step process. First, perform one iteration of the
GLIMPSE2D algorithm on the residual γ−Aκ̂G, and update the
sparse component κ̂S. Then, perform one iteration of Wiener fil-
tering, described in Sect. B.2, on the residual γ−Aκ̂S, and update
the Gaussian component κ̂G. Finally, since we consider the vari-
ations of the convergence around its mean value, the output of
the MCALens algorithm undergoes mean-centering.

Appendix C: Proof of Proposition 1

Proof. The exchangeability of (Xi, Yi)n+1
i=1 implies the exchange-

ability of the conformity scores (Λi)n+1
i=1 . Moreover, by hypothe-

sis, the latter are almost surely distinct. Therefore, we can apply
Lemma 2 by Romano et al. (2019, supplementary material):

1 − α ≤ P
{
Λ ≤ Λ(α)

}
≤ 1 − α +

1
n + 1

, (C.1)

where we have denoted Λ := Λn+1. Let λ and λ(α) denote real-
izations of Λ and Λ(α), respectively. Then, λ corresponds to the
(unknown) conformity score associated with the outcome (x, y)
of (X, Y). It satisfies, similarly to (26)-(27),

λ = min
{
λ′ ∈ [a, b] : y ∈ Ĉλ′ (x)

}
(C.2)

= min
{
λ′ ∈ [a, b] : gλ′

(
r̂(x)

)
≥

∣∣∣ f̂ (x) − y
∣∣∣} . (C.3)

Then, combining (C.2), (C.3) and (24) yields, for any λ′ ∈ R,

λ ≤ λ′ ⇐⇒ gλ′
(
r̂(x)

)
≥

∣∣∣ f̂ (x) − y
∣∣∣ (C.4)

⇐⇒ y ∈ Ĉλ′ (x). (C.5)

Therefore, using λ′ := λ(α), we get

P
{
Λ ≤ Λ(α)

}
= P

{
Y ∈ ĈΛ(α) (X)

}
. (C.6)

Finally, plugging (C.6) into (C.1) yields (29), which concludes
the proof.
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