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Abstract—We propose a novel method to increase shift invari-
ance and prediction accuracy in convolutional neural networks.
Specifically, we replace the first-layer combination “real-valued
convolutions → max pooling” (RMax) by “complex-valued con-
volutions → modulus” (CMod), which is stable to translations,
or shifts. To justify our approach, we claim that CMod and
RMax produce comparable outputs when the convolution kernel
is band-pass and oriented (Gabor-like filter). In this context,
CMod can therefore be considered as a stable alternative to
RMax. To enforce this property, we constrain the convolution
kernels to adopt such a Gabor-like structure. The corresponding
architecture is called mathematical twin, because it employs a
well-defined mathematical operator to mimic the behavior of the
original, freely-trained model. Our approach achieves superior
accuracy on ImageNet and CIFAR-10 classification tasks, com-
pared to prior methods based on low-pass filtering. Arguably,
our approach’s emphasis on retaining high-frequency details
contributes to a better balance between shift invariance and
information preservation, resulting in improved performance.
Furthermore, it has a lower computational cost and memory
footprint than concurrent work, making it a promising solution
for practical implementation.

Index Terms—deep learning, image processing, shift invari-
ance, max pooling, dual-tree complex wavelet packet transform,
aliasing

I. INTRODUCTION

Over the past decade, some progress has been made on
understanding the strengths and limitations of convolutional
neural networks (CNNs) for computer vision [1], [2]. The
ability of CNNs to embed input images into a feature space
with linearly separable decision regions is a key factor to
achieve high classification accuracy. An important property
to reach this linear separability is the ability to discard or
minimize non-discriminative image components. In particular,
feature vectors are expected to be stable with respect to
translations [2]. However, subsampling operations, typically
found in convolution and pooling layers, are an important
source of instability—a phenomenon known as aliasing [3].
A few approaches have attempted to address this issue.

This work has been partially supported by the LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01) funded by the French program Investissement
d’avenir, as well as the ANR grant MIAI (ANR-19-P3IA-0003). Most of
the computations presented in this paper were performed using the GRICAD
infrastructure (https://gricad.univ-grenoble-alpes.fr), which is supported by
Grenoble research communities.

Blurpooled CNNs: Zhang [4] proposed to apply a low-
pass blurring filter before each subsampling operation in
CNNs. Specifically, 1) max pooling layers (Max → Sub)1 are
replaced by max-blur pooling (Max → Blur → Sub); 2) con-
volution layers followed by ReLU (Conv → Sub → ReLU) are
blurred before subsampling (Conv → ReLU → Blur → Sub).2

The combination Blur → Sub is referred to as blur pooling.
This approach follows a well-known practice called antialias-
ing, which involves low-pass filtering a high-frequency signal
before subsampling, in order to avoid artifacts in reconstruc-
tion. Their approach improved the shift invariance as well as
the accuracy of CNNs trained on ImageNet and CIFAR-10
datasets. However, this was achieved with a significant loss of
information.

A question then arises: is it possible to design a non-
destructive method, and if so, does it further improve accu-
racy? In a more recent work, Zou et al. [5] tackled this question
through an adaptive antialiasing approach, called adaptive blur
pooling. Albeit achieving higher prediction accuracy, adaptive
blur pooling requires additional memory, computational re-
sources, and trainable parameters.

Proposed Approach: In this paper, we propose an alter-
native approach based on complex-valued convolutions, ex-
tracting high-frequency features that are stable to translations.
We observed improved accuracy for ImageNet and CIFAR-10
classification, compared to the two antialiasing methods based
on blur pooling [4], [5]. Furthermore, our approach offers
significant advantages in terms of computational efficiency and
memory usage, and does not induce any additional training,
unlike adaptive blur pooling.

Our proposed method replaces the first layers of a CNN:
Conv → Sub → Bias → ReLU → MaxPool, which can
provably be rewritten as

Conv → Sub → MaxPool → Bias → ReLU, (1)

by the following combination:

CConv → Sub → Modulus → Bias → ReLU, (2)

where CConv denotes a convolution operator with a complex-
valued kernel, whose real and imaginary parts approximately

1Sub and Conv stand for “subsampling” and “convolution,” respectively.
2ReLU is computed before blurring; otherwise the network would simply

perform on low-resolution images.
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form a 2D Hilbert transform pair [6]. From (1) and (2), we
introduce the two following operators:

RMax : Conv → Sub → MaxPool; (3)
CMod : CConv → Sub → Modulus. (4)

Our method is motivated by the following theoretical claim.
In a recent preprint [7], we proved that 1) CMod is nearly
invariant to translations, if the convolution kernel is band-pass
and clearly oriented; 2) RMax and CMod produce comparable
outputs, except for some filter frequencies regularly scattered
across the Fourier domain. We then combined these two
properties to establish a stability metric for RMax as a function
of the convolution kernel’s frequency vector. This work was
essentially theoretical, with limited experiments conducted on
a deterministic model solely based on the dual-tree complex
wavelet packet transform (DT-CWPT). However, it lacked
applications to tasks such as image classification. Building
upon this theoretical study, in this paper, we consider the
CMod operator as a proxy for RMax, extracting comparable,
yet more stable features.

In compliance with the theory, the RMax-CMod substitution
is only applied to the output channels associated with oriented
band-pass filters, referred to as Gabor-like kernels. This kind
of structure is known to arise spontaneously in the first layer
of CNNs trained on image datasets such as ImageNet [8]. In
this paper, we enforce this property by applying additional
constraints to the original model. Specifically, a predefined
number of convolution kernels are guided to adopt Gabor-
like structures, instead of letting the network learn them from
scratch. For this purpose, we rely on the dual-tree complex
wavelet packet transform (DT-CWPT) [9]. Throughout the
paper, we refer to this constrained model as a mathematical
twin, because it employs a well-defined mathematical operator
to mimic the behavior of the original model. In this context, re-
placing RMax by CMod is straightforward, since the complex-
valued filters are provided by DT-CWPT.

Other Related Work: Chaman and Dokmanic [10]
reached perfect shift invariance by using an adaptive, input-
dependent subsampling grid, whereas previous models rely on
fixed grids. Although this method satisfied shift invariance for
integer-pixel translations, it did not address the problem of
shift instability for fractional-pixel translations, and therefore
falls outside the scope of this paper.

Another aspect of shift invariance in CNNs is related to
boundary effects. The fact that CNNs can encode the absolute
position of an object in the image by exploiting boundary
effects was discovered independently by Islam et al. [11], and
Kayhan and Gemert [12]. This phenomenon is left outside the
scope of our paper. Finally, [13], [14] studied the impact of
pretraining on shift invariance and generalizability to out-of-
distribution data, without modifying the network architecture.

II. PROPOSED APPROACH

We first describe the general principles of our approach
based on complex convolutions. We then present the mathe-
matical twin based on DT-CWPT, and explain how our method

has been benchmarked against blur-pooling-based antialiased
models.

We represent feature maps with straight capital letters:
X ∈ S , where S denotes the space of square-summable 2D
sequences. Indexing is denoted by square brackets: for any
2D index n ∈ Z2, X[n] ∈ R or C. The cross-correlation
between X and V ∈ S is defined by (X ⋆ V)[n] :=∑

k∈Z2 X[n+k] V[k]. The down arrow refers to subsampling:
for any m ∈ N∗, (X ↓ m)[n] := X[mn].

A. Standard Architectures

A convolution layer with K input channels, L output
channels and subsampling factor m ∈ N\{0} is parameterized
by a weight tensor V := (Vlk)l∈{1..L}, k∈{1..K} ∈ SL×K .
For any multichannel input X := (Xk)k∈{1..K} ∈ SK , the
corresponding output Y := (Yl)l∈{1..L} ∈ SL is defined such
that, for any output channel l ∈ {1 . . L},

Yl :=
K∑

k=1

(Xk ⋆Vlk) ↓ m. (5)

For instance, in AlexNet and ResNet, K = 3 (RGB input
images), L = 64, and m = 4 and 2, respectively. Next, a
bias b := (b1, · · · , bL)⊤ ∈ RL is applied to Y, which is
then transformed through nonlinear ReLU and max pooling
operators. The activated outputs satisfy

Amax
l := MaxPool (ReLU(Yl + bl)) , (6)

where we have defined, for any Y ∈ S and any n ∈ Z2,

ReLU(Y)[n] := max(0, Y[n]); (7)
MaxPool(Y)[n] := max

∥k∥∞≤1
Y[2n+ k]. (8)

B. Core Principle of our Approach

We consider the first convolution layer of a CNN, as
described in (5). As widely discussed in the literature [8], after
training with ImageNet, a certain number of convolution ker-
nels Vlk spontaneously take the appearance of oriented wave-
forms with well-defined frequency and orientation (Gabor-like
kernels). A visual representation of trained convolution kernels
is provided in Fig. 1. In the present paper, we refer to these
specific output channels l ∈ G ⊂ {1 . . L} as Gabor channels.
The main idea is to substitute, for any l ∈ G, RMax by CMod,
as explained hereafter. Following (1), expression (6) can be
rewritten

Amax
l = ReLU

(
Ymax

l + bl
)
, (9)

where Ymax
l is the output of an RMax operator as introduced

in (3). More formally,

Ymax
l := MaxPool

(
K∑

k=1

(Xk ⋆Vlk) ↓ m

)
. (10)

Then, following (2), the RMax-CMod substitution yields

Amod
l = ReLU

(
Ymod

l + bl
)
, (11)



(a) Standard AlexNet (b) WAlexNet (DT-CWPT-based twin)

(c) Standard ResNet-34 (d) WResNet-34 (DT-CWPT-based twin)

Fig. 1. Convolution kernels V ∈ S64×3 for the models based on AlexNet and ResNet-34, after training with ImageNet. Each image represents a 3D filter
(Vlk)k∈{1..3}, for any output channel l ∈ {1 . . 64}. For our DT-CWPT-based twin architecture (Figs. 1b and 1d), the Lfree := 32 or 40 first kernels are
freely-trained, whereas the remaining Lgabor := 32 or 24 kernels are constrained to be monochrome, band-pass and oriented. Left: representation in the
spatial domain; right: corresponding power spectra.

where Ymod
l is the output of a CMod operator (4), satisfying

Ymod
l :=

∣∣∣∣∣
K∑

k=1

(Xk ⋆Wlk) ↓ (2m)

∣∣∣∣∣ . (12)

In the above expression, Wlk is a complex-valued analytic
kernel defined as Wlk := Vlk+iH(Vlk), where H denotes the
two-dimensional Hilbert transform as introduced by Havlicek
et al. [6]. The Hilbert transform is designed such that the
Fourier transform of Wlk is entirely supported in the half-
plane of nonnegative x-values. Therefore, since Vlk has a
well-defined frequency and orientation, the energy of Wlk is
concentrated within a small window in the Fourier domain.
Due to this property, the modulus operator provides a smooth
envelope for complex-valued cross-correlations with Wlk [15].
This leads to the output Ymod

l (12) being nearly invariant to
translations. Additionally, the subsampling factor in (12) is
twice that in (10), to account for the factor-2 subsampling
achieved through max pooling (8).

C. Wavelet-Based Twin Models (WCNNs)

As explained in Section II-B, introducing an imaginary part
to the Gabor-like convolution kernels improves shift invari-
ance. Our method therefore restricts to the Gabor channels
l ∈ G ⊂ {1 . . L}. However, G is unknown a priori: for a
given output channel l ∈ {1 . . L}, whether Vlk will become
band-pass and oriented after training is unpredictable. Thus,
we need a way to automatically separate the set G of Gabor

channels from the set of remaining channels, denoted by
F := {1 . . L} \G. To this end, we built “mathematical twins”
of standard CNNs, based on the dual-tree wavelet packet
transform (DT-CWPT). These models, which we call WCNNs,
reproduce the behavior of freely-trained architectures with a
higher degree of control and fewer trainable parameters. In
short, the two groups of output channels are organized such
that F = {1 . . Lfree} and G = {(Lfree + 1) . . L}. The first
Lfree channels, which are outside the scope of our approach,
remain freely-trained as in the standard architecture. The
remaining Lgabor := 1 − Lfree channels are constrained to
adopt a Gabor-like structure with deterministic frequencies and
orientations, through the implementation of DT-CWPT. Using
the principles introduced in Section II-B, we then replace
RMax (10) by CMod (12) for all Gabor channels l ∈ G.
The corresponding models are referred to as CWCNNs. A
detailed description of WCNNs and CWCNNs is provided in
Appendix A, together with schematic representations.

D. WCNNs with Blur Pooling

We benchmark our approach against the antialiasing meth-
ods proposed by Zhang [4] and Zou et al. [5]. To this end,
we first consider a WCNN antialiased with static or adaptive
blur pooling, respectively referred to as BlurWCNN and
ABlurWCNN. Then, we substitute the blurpooled Gabor chan-
nels with our own CMod-based approach. The correspond-
ing models are respectively referred to as CBlurWCNN and



CABlurWCNN. A schematic representation of BlurWAlexNet
and CBlurWAlexNet can be found in Fig. 5.

III. EXPERIMENTS

To ensure reproducibility, we have released the code asso-
ciated with our study on GitHub.3

A. Experiment Details

ImageNet: We built our WCNN and CWCNN twin
models based on AlexNet [16] and ResNet-34 [17]. The
hyperparameter Lfree was manually chosen based on empirical
observations (32 for AlexNet and 40 for ResNet-34). Besides,
DT-CWPT decompositions were performed with Q-shift or-
thogonal filters of length 10 as introduced by Kingsbury [18].
More details can be found in Appendix D.

Zhang’s static blur pooling approach has been tested on both
AlexNet and ResNet, whereas Zou et al.’s adaptive approach
has only been tested on ResNet. The latter was indeed not
implemented on AlexNet in the original paper, and we were
unable to adapt it to this architecture.

Our models were trained on the ImageNet ILSVRC2012
dataset [19], following the standard procedure provided by the
PyTorch library [20].4 Moreover, we set aside 100K images
from the training set—100 per class—in order to compute the
top-1 error rate after each training epoch (“validation set”).

CIFAR-10: We also trained ResNet-18- and ResNet-
34-based models on the CIFAR-10 dataset. Training was
performed on 300 epochs, with an initial learning rate set to
0.1, decreased by a factor of 10 every 100 epochs. We set
aside 5 000 images out of 50K to compute accuracy during
the training phase.

B. Evaluation Metrics

Classification Accuracy: Classification accuracy was
computed on the ImageNet test set (50K images). We followed
the ten-crops procedure [16]: predictions are made over 10
patches extracted from each input image, and the softmax
outputs are averaged to get the overall prediction. We also
considered center crops of size 224 for one-crop evaluation.
In both cases, we used top-1-5 error rates. For CIFAR-10
evaluation (10K images in the test set), we measured the top-1
error rate with one- and ten-crops.

Measuring Shift Invariance: For each image in the Im-
ageNet evaluation set, we extracted several patches of size
224, each of which being shifted by 0.5 pixel along a given
axis. We then compared their outputs in order to measure the
model’s robustness to shifts. This was done by computing the
Kullback-Leibler (KL) divergence between output vectors—
which, under certain hypotheses, can be interpreted as proba-
bility distributions [21, pp. 205-206]. This metric is intended
for visual representation (see Fig. 2).

In addition, we measured the mean flip rate (mFR) between
predictions [22], as done by Zhang [4] in its blurpooled

3https://github.com/hubert-leterme/wcnn
4PyTorch “examples” repository available at https://github.com/pytorch/

examples/tree/main/imagenet

Fig. 2. AlexNet-based models: mean KL divergence between the outputs of
shifted images. Legend: †blur pooling; ∗CMod-based approach (ours).

models. For each direction (vertical, horizontal and diagonal),
we measured the mean frequency upon which two shifted input
images yield different top-1 predictions, for shift distances
varying from 1 to 8 pixels. We then normalized the results
with respect to AlexNet’s mFR, and averaged over the three
directions. This metric is also referred to as consistency.

We repeated the procedure for the models trained on
CIFAR-10. This time, we extracted patches of size 32 × 32
from the evaluation set, and computed mFR for shifts varying
from 1 to 4 pixels. Normalization was performed with respect
to ResNet-18’s mFR.

C. Results and Discussion

Validation and Test Accuracy: Error rates of AlexNet-
and ResNet-based architectures, computed on the test sets, are
provided in Table I for ImageNet and Table II for CIFAR-10.

When trained on ImageNet, our CMod-based approach sig-
nificantly outperforms the baselines for AlexNet: CWCNN vs
WCNN, and CBlurWCNN vs BlurWCNN. Positive results are
also obtained for ResNet-based models trained on ImageNet.
However, adaptive blur pooling, when applied to the Gabor
channels (ABlurWCNN), yields similar or marginally higher
accuracy than our approach (CABlurWCNN). Nevertheless,
our method is computationally more efficient, requires less
memory (see “Computational Resources” below for more de-
tails), and does not demand additional training, unlike adaptive
blur pooling. On the other hand, when trained on CIFAR-10,
our approach systematically yields the lowest error rates.

Shift Invariance (KL Divergence): The mean KL diver-
gence between the outputs of shifted images are plotted in
Fig. 2 for AlexNet trained on ImageNet. The mean flip rate for
shifted inputs (consistency) is reported in Table I for ImageNet
(AlexNet and ResNet-34) and Table II for CIFAR-10 (ResNet-
18 and 34).

In models without blur pooling (blue curves), the RMax-
CMod substitution greatly reduces first-layer instabilities, re-
sulting in a flattened curve and avoiding the “bumps” ob-
served for non-stabilized models. On the other hand, when
applied to the blurpooled models (red curves), the RMax-
CMod substitution actually tends to degrade shift invariance,
as evidenced by the bell-shaped curve. Nevertheless, the corre-
sponding classifier is significantly more accurate, as shown in

https://github.com/hubert-leterme/wcnn
https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/pytorch/examples/tree/main/imagenet


TABLE I
EVALUATION METRICS ON IMAGENET (%): THE LOWER THE BETTER

Model One-crop Ten-crops Shifts
top-1 top-5 top-1 top-5 mFR

AlexNet
CNN 45.3 22.2 41.3 19.3 100.0

WCNN 44.9 21.8 40.8 19.0 101.4
CWCNN∗ 44.3 21.3 40.2 18.5 88.0
BlurCNN† 44.4 21.6 40.7 18.7 63.8

BlurWCNN† 44.3 21.4 40.5 18.5 63.1
CBlurWCNN†∗ 43.3 20.5 39.6 17.9 69.4

ResNet-34
CNN 27.6 9.2 24.8 7.7 78.1

WCNN 27.4 9.2 24.7 7.6 77.2
CWCNN∗ 27.2 9.0 24.4 7.4 73.1
BlurCNN† 26.7 8.6 24.0 7.2 61.2

BlurWCNN† 26.7 8.6 24.1 7.3 65.2
CBlurWCNN†∗ 26.5 8.4 23.7 7.0 62.5

ABlurCNN‡ 26.1 8.3 23.5 7.0 60.8
ABlurWCNN‡ 26.0 8.2 23.6 6.9 62.1

CABlurWCNN‡∗ 26.1 8.2 23.7 7.0 63.1
†static and ‡adaptive blur pooling; ∗CMod-based approach (ours)

TABLE II
EVALUATION METRICS ON CIFAR-10 (%): THE LOWER THE BETTER

Model ResNet-18 ResNet-34
1crp 10crp shifts 1crp 10crps shifts

CNN 14.9 10.8 100.0 15.2 10.9 100.3
WCNN 14.2 10.3 92.4 14.5 10.5 99.2

CWCNN∗ 13.8 9.6 88.8 12.9 9.2 93.0
BlurCNN† 14.2 10.4 87.7 15.7 11.6 88.2

BlurWCNN† 13.1 9.7 84.6 13.2 9.9 85.6
CBlurWCNN†∗ 12.3 8.9 85.7 12.4 9.1 83.7

ABlurCNN‡ 14.6 11.0 90.9 16.3 12.8 91.9
ABlurWCNN‡ 14.5 11.0 86.5 14.0 10.4 93.3

CABlurWCNN‡∗ 12.8 9.7 81.7 12.8 9.2 86.6
1crp and 10crp: top-1 error rate using one- and ten-crops methods
shifts: mFR measuring consistency
†static and ‡adaptive blur pooling; ∗CMod-based approach (ours)

Table I. This is not surprising, as our approach prioritizes the
conservation of high-frequency details, which are important
for classification. An extreme reduction of shift variance using
a large blur pooling filter would indeed result in a significant
loss of accuracy. Therefore, our work achieves a better tradeoff
between shift invariance and information preservation.

To gain further insights into this phenomenon, we conducted
experiments by varying the size of the blurring filters. Figure 3
shows the relationship between consistency and prediction
accuracy on ImageNet (custom validation set), for AlexNet-
based models with different blurring filter sizes ranging from
1 (no blur pooling) to 7 (heavy loss of high-frequency infor-
mation). Additional plots are provided in Appendix E, for the
test set as well as ResNet-based models. We find that a near-
optimal trade-off is achieved when the filter size is set to 2 or
3. Furthermore, at equivalent consistency levels, CBlurWCNN
(our approach) outperforms BlurWCNN in terms of accuracy.

As a side note, because shift invariance is desirable for a
wide range of tasks and datasets, embedding this property into
CNNs may improve generalizability and avoid overfitting.

Computational Resources: Table III displays the com-
putational resources and memory footprint required for each
method, per Gabor channel. The values are normalized relative
to non-stabilized AlexNet or ResNet. The metrics are, on the

Fig. 3. Classification accuracy (ten-crops) vs consistency, measuring the
stability of predictions to small input shifts, for AlexNet-based models (the
lower the better for both axes). For each of the three architectures, we
increased the blurring filter size from 1 (i.e., no blur pooling) to 7. The blue
diamonds (no blur pooling) and red stars (blur pooling with filters of size 3)
correspond to the models for which evaluation metrics have been reported in
Table I (models trained after 90 epochs).

TABLE III
COMPUTATIONAL COST AND MEMORY FOOTPRINT

Method Computational cost Memory footprint
AlexNet ResNet AlexNet ResNet

No antialiasing (ref) 1 .0 1 .0 1 .0 1 .0
BlurPool [4] 4.0 1.0 4.7 1.9

ABlurPool [5] – 2.1 – 2.0
CMod (ours) 0.5 0.5 0.6 0.4

one hand, the FLOPs necessary for computing Ymax
l (10) or

Ymod
l (12), and, on the other hand, the size of the intermediate

and output tensors saved by PyTorch for the backward pass.
More details are provided in Appendix F.

The observed improvements are mainly due to the larger
stride (i.e., subsampling factor) in the first layer, allowing for
smaller intermediate feature maps.

IV. CONCLUSION

The mathematical twins introduced in this paper serve as a
proof of concept for our CMod-based approach. However, its
range of application extends well beyond DT-CWPT filters.
It is important to note that such initial layers play a critical
role in CNNs by extracting low-level geometric features such
as edges, corners or textures. Therefore, a specific attention is
required for their design. In contrast, deeper layers are more
focused on capturing high-level structures that conventional
image processing tools are poorly suited for [23].

Furthermore, our approach has potential for broader appli-
cability beyond CNNs. There is a growing interest in using
self-attention mechanisms in computer vision [24] to capture
complex, long-range dependencies among image representa-
tions. Recent work on vision transformers has proposed using
the first layers of a CNN as a “convolutional token embedding”
[25]–[27], effectively reintroducing inductive biases to the
architecture, such as locality and weight sharing. By applying
our method to this embedding, we can potentially provide self-
attention modules with shift-invariant inputs. This could be
beneficial in improving the performance of vision transform-
ers, especially when the amount of available data is limited.



APPENDIX A
DESIGN OF WCNNS: GENERAL ARCHITECTURE

In this section, we provide complements to the description
of the mathematical twin (WCNN) introduced in Sections II-C
and II-D.

We assume, without loss of generality, that K = 3 (RGB
input images). The numbers Lfree and Lgabor of freely-
trained and Gabor channels are empirically determined from
the trained CNNs (see Figs. 1a and 1c). In a twin WCNN
architecture, the two groups of output channels are organized
such that F = {1 . . Lfree} and G = {(Lfree + 1) . . L}. The
first Lfree channels, which are outside the scope of our ap-
proach, remain freely-trained, like in the standard architecture.
Regarding the Lgabor remaining channels (Gabor channels),
the convolution kernels Vlk with l ∈ G are constrained to
satisfy the following requirements. First, all three RGB input
channels are processed with the same filter, up to a multi-
plicative constant. More formally, there exists a luminance
weight vector µ := (µ1, µ2, µ3)

⊤, with µk ∈ [0, 1] and∑3
k=1 µk = 1, such that,

∀k ∈ {1 . . 3} , Vlk = µkṼl, (13)

where Ṽl :=
∑3

k=1 Vlk denotes the mean kernel. Furthermore,
Ṽl must be band-pass and oriented (Gabor-like filter). The
following paragraphs explain how these two constraints are
implemented in our WCNN architecture.

A. Monochrome Filters

Expression (13) is actually a property of standard
CNNs: the oriented band-pass RGB kernels generally appear
monochrome (see kernel visualization of freely-trained CNNs
in Figs. 1a and 1c). In WCNNs, this constraint is implemented
with a trainable 1 × 1 convolution layer [28], parameterized
by µ, computing the following luminance image:

Xlum :=

3∑
k=1

µkXk. (14)

This constraint can be relaxed by authorizing a specific lu-
minance vector µl for each Gabor channel l ∈ G. Numerical
experiments on such models are left for future work.

B. Gabor-Like Kernels

To guarantee the Gabor-like property on Ṽl, we imple-
mented DT-CWPT, which is achieved through a series of sub-
sampled convolutions. The number of decomposition stages
J ∈ N \ {0} was chosen such that m = 2J−1, where, as a re-
minder, m denotes the subsampling factor as introduced in (5).
DT-CWPT generates a set of filters

(
Wdt

k′

)
k′∈{1..4×4J}, which

tiles the Fourier domain [−π, π]
2 into 4 × 4J overlapping

square windows. Their real and imaginary parts approximately
form a 2D Hilbert transform pair. Figure 4 illustrates such a
convolution filter.

The WCNN architecture is designed such that, for any
Gabor channel l ∈ G, Ṽl is the real part of one such filter:

∃k′ ∈
{
1 . . 4× 4J

}
: Ṽl = Re

(
Wdt

k′

)
. (15)

(a) (b) (c) (d)

Fig. 4. (a), (b): Real and imaginary parts of a Gabor-like convolution kernel
Wlk := Vlk+iH(Vlk), forming a 2D Hilbert transform pair. (c), (d): Power
spectra (energy of the Fourier transform) of Vlk and Wlk , respectively.

The output Yl introduced in (5) then becomes

Yl =
(
Xlum ⋆ Ṽl

)
↓ 2J−1. (16)

To summarize, a WCNN substitutes the freely-trained con-
volution (5) with a combination of (14) and (16), for any Gabor
output channels l ∈ G. This combination is wrapped into a
wavelet block, also referred to as WBlock. Technical details
about its exact design are provided in Section B. Note that
the Fourier resolution of Vlk increases with the subsampling
factor m. This property is consistent with what is observed in
freely-trained CNNs: in AlexNet, where m = 4, the Gabor-
like filters are more localized in frequency (and less spatially
localized) than in ResNet, where m = 2.

Visual representations of the kernels V ∈ SL×K , with K =
3 and L = 64, for the WCNN architectures based on AlexNet
and ResNet-34, referred to as WAlexNet and WResNet-34, are
provided in Figs. 1b and 1d, respectively.

C. Stabilized WCNNs

Using the principles presented in Section II-B of the main
paper, we replace RMax (10) by CMod (12) for all Gabor
channels l ∈ G. In the corresponding model, referred to as
CWCNN, the wavelet block is replaced by a complex wavelet
block (CWBlock), in which (16) becomes

Zl =
(
Xlum ⋆ W̃l

)
↓ 2J , (17)

where W̃l is obtained by considering both real and imaginary
parts of the DT-CWPT filter:

W̃l := Wdt
k′ , (18)

where k′ has been introduced in (15). Then, a modulus
operator is applied to Zl, which yields Ymod

l such as defined
in (12), with Wlk := µkW̃l for any RGB channel k ∈ {1 . . 3}.
Finally, we apply a bias and ReLU to Ymod

l , following (11).
A schematic representation of WAlexNet and its stabilized

version, referred to as CWAlexNet, is provided in Fig. 5
(top part). Following Section II-D, the WCNN and CWCNN
architectures built upon blurpooled AlexNet, referred to as
BlurWAlexNet and CBlurWAlexNet, respectively, are repre-
sented in the same figure (bottom part). Note that, for a fair
comparison, all three models use blur pooling in the freely-
trained channels as well as deeper layers; only the Gabor
channels are modified.



(a) AlexNet (b) WAlexNet (baseline) (c) CWAlexNet (proposed approach)

Fig. 5. First layers of AlexNet and its variants, corresponding to a convolution layer followed by ReLU and max pooling (1). The models are framed
according to the same colors and line styles as in Fig. 2 (main paper). The green modules are the ones containing trainable parameters; the orange and purple
modules represent static linear and nonlinear operators, respectively. The numbers between each module represent the depth (number of channels), height and
width of each output. Fig. 5a: freely-trained models. Top: standard AlexNet. Bottom: Zhang’s “blurpooled” AlexNet. Fig. 5b: mathematical twins (WAlexNet)
reproducing the behavior of standard (top) and blurpooled (bottom) AlexNet. The left side of each diagram corresponds to the Lfree := 32 freely-trained
output channels, whereas the right side displays the Lgabor := 32 remaining channels, where freely-trained convolutions have been replaced by a wavelet
block (WBlock) as described in Section A. Fig. 5c: CMod-based WAlexNet, where WBlock has been replaced by CWBlock, and max pooling by a modulus.
The bias and ReLU are placed after the modulus, following (2). In the bottom models, we compare Zhang’s antialiasing approach (Fig. 5b) with ours (Fig. 5c)
in the Gabor channels.

APPENDIX B
FILTER SELECTION AND SPARSE REGULARIZATION

We explained that, for each Gabor channel l ∈ G, the
average kernel Ṽl is the real part of a DT-CWPT filter, as
written in (15). We now explain how the filter selection is
done; in other words, how k′ is chosen among

{
1 . . 4× 4J

}
.

Since input images are real-valued, we restrict to the filters
with bandwidth located in the half-plane of positive x-values.
For the sake of concision, we denote by Kdt := 2 × 4J the
number of such filters.

For any RGB image X ∈ S3, a luminance image Xlum ∈ S
is computed following (14), using a 1 × 1 convolution layer.
Then, DT-CWPT is performed on Xlum. We denote by D :=
(Dk)k∈{1..Kdt} the tensor containing the real part of the DT-
CWPT feature maps:

Dk =
(
Xlum ⋆ ReW

(J)
k

)
↓ 2J−1. (19)

For the sake of computational efficiency, DT-CWPT is per-
formed with a succession of subsampled separable convolu-
tions and linear combinations of real-valued wavelet packet
feature maps [29]. To match the subsampling factor m :=

2J−1 of the standard model, the last decomposition stage is
performed without subsampling.

A. Filter Selection

The number of dual-tree feature maps Kdt may be greater
than the number of Gabor channels Lgabor. In that case,
we therefore want to select filters that contribute the most
to the network’s predictive power. First, the low-frequency
feature maps D0 and D(4J+1) are discarded. Then, a subset of
K ′

dt < Kdt feature maps is manually selected and permuted
in order to form clusters in the Fourier domain. Considering
a (truncated) permutation matrix Σ ∈ RK′

dt×Kdt , the output
of this transformation, denoted by D′ ∈ SK′

dt , is defined by:

D′ := ΣD. (20)

The feature maps D′ are then sliced into Q groups of channels
D(q) ∈ SKq , each of them corresponding to a cluster of
band-pass dual-tree filters with neighboring frequencies and
orientations. On the other hand, the output of the wavelet
block, Ygabor := (Yl)l∈{Lfree+1..L} ∈ SLgabor , where Yl has
been introduced in (5), is also sliced into Q groups of channels



Fig. 6. Detail of a wavelet block with J = 3 as in AlexNet, in its RMax
(left) and CMod (right) versions. DT-RWPT corresponds to the real part of
DT-CWPT.

Y(q) ∈ SLq . Then, for each group q ∈ {1 . . Q}, an affine map-
ping between D(q) and Y(q) is performed. It is characterized
by a trainable matrix A(q) :=

(
α

(q)
1 , · · · , α(q)

Lq

)⊤ ∈ RLq×Kq

such that, for any l ∈ {1 . . Lq},

Y
(q)
l := α

(q)⊤
l ·D(q). (21)

As in the color mixing stage, this operation is implemented as
a 1× 1 convolution layer.

A schematic representation of the real- and complex-valued
wavelet blocks can be found in Fig. 6.

B. Sparse Regularization

For any group q ∈ {1 . . Q} and output channel l ∈
{1 . . Lq}, we want the model to select one and only one
wavelet packet feature map within the q-th group. In other
words, each row vector α(q)

l :=
(
α
(q)
l, 1, · · · , α

(q)
l,Kq

)⊤
of A(q)

contains no more than one nonzero element, such that (21)
becomes

Y
(q)
l = α

(q)
lk D

(q)
k (22)

for some (unknown) value of k ∈ {1 . .Kq}. To enforce
this property during training, we add a mixed-norm l1/l∞-
regularizer [30] to the loss function to penalize non-sparse
feature map mixing as follows:

L := L0 +

Q∑
q=1

λq

Lq∑
l=1

( ∥∥α(q)
l

∥∥
1∥∥α(q)

l

∥∥
∞

− 1

)
, (23)

where L0 denotes the standard cross-entropy loss and λ ∈ RQ

denotes a vector of regularization hyperparameters. Note that
the unit bias in (23) serves for interpretability of the regular-
ized loss (L = L0 in the desired configuration) but has no
impact on training.

APPENDIX C
ADAPTATION TO RESNET: BATCH NORMALIZATION

In many architectures including ResNet, the bias is com-
puted after an operation called batch normalization (BN) [31].
In this context, the first layers have the following structure:

Conv → Sub → BN → Bias → ReLU → MaxPool. (24)

As shown hereafter, the RMax-CMod substitution yields,
analogously to (2),

CConv→Sub→Modulus→BN0→Bias→ReLU, (25)

where BN0 refers to a special type of batch normalization
without mean centering. A schematic representation of the DT-
CWPT-based ResNet architecture and its variants is provided
in Fig. 7.

A BN layer is parameterized by trainable weight and bias
vectors, respectively denoted by a and b ∈ RL. In the
remaining of the section, we consider input images X as a
stack of discrete stochastic processes. Then, expression (6) is
replaced by

Al :=MaxPool

{
ReLU

(
al ·

Yl−Em[Yl]√
Vm[Yl]+ε

+bl

)}
, (26)

with Yl satisfying (5) (output of the first convolution layer).
In the above expression, we have introduced Em(Yl) ∈ R and
Vm(Yl) ∈ R+, which respectively denote the mean expected
value and variance of Yl[n], for indices n contained in the
support of Yl, denoted by supp(Yl). Let us denote by N ∈ N\
{0} the support size of input images. Therefore, if the filter’s
support size Nfilt is much smaller that N , then supp(Yl) is
roughly of size N/m. We thus define the above quantities as
follows:

Em[Yl] :=
m2

N2

∑
n∈Z2

E[Yl[n]]; (27)

Vm[Yl] :=
m2

N2

∑
n∈Z2

V[Yl[n]]. (28)

In practice, estimators are computed over a minibatch of
images, hence the layer’s denomination. Besides, ε > 0 is
a small constant added to the denominator for numerical
stability. For the sake of concision, we now assume that a = 1.
Extensions to other multiplicative factors is straightforward.

Let l ∈ G denote a Gabor channel. Then, recall that Yl

satisfies (16) (output of the WBlock), with

Ṽl := Re W̃l, (29)

where W̃l denotes one of the Gabor-like filters spawned
by DT-CWPT. The following proposition states that, if the
kernel’s bandwidth is small enough, then the output of the
convolution layer sums to zero.

Proposition 1: We assume that the Fourier transform of W̃l

is supported in a region of size κ× κ which does not contain
the origin (Gabor-like filter). If, moreover, κ ≤ 2π

m , then∑
n∈Z2

Yl[n] = 0. (30)

Proof: This proposition takes advantage of Shannon’s
sampling theorem. A similar reasoning can be found in the
proof of Theorem 2.9 in [7].

In practice, the power spectrum of DT-CWPT filters cannot
be exactly zero on regions with nonzero measure, since they



(a) ResNet (b) WResNet (baseline) (c) CWResNet (proposed approach)

Fig. 7. First layers of ResNet and its variants, corresponding to a convolution layer followed by ReLU and max pooling. The bias module from Fig. 5 has
been replaced by an affine batch normalization layer (“BN → Bias”, or “BN0 → Bias” when placed after Modulus—see Section C). Top: ResNet without
blur pooling. Middle: Zhang’s “blurpooled” models [4]. Bottom: Zou et al.’s approach, using adaptive blur pooling [5].

are finitely supported. However, we can reasonably assume
that it is concentrated within a region of size π/2J−1 = π/m.
Therefore, since we have discarded low-pass filters, the con-
ditions of Proposition 1 are approximately met for W̃l.

We now assume that (30) is satisfied. Moreover, we assume
that E[Yl[n]] is constant for any n ∈ supp(Yl). Aside from
boundary effects, this is true if E[Xlum[n]] is constant for any
n ∈ supp(Xlum). This property is a rough approximation for
images of natural scenes or man-made objects. In practice,
the main subject is generally located at the center, the sky

at the top, etc. These are sources of variability for color and
luminance distributions across images, as discussed in [32].

We then get, for any n ∈ Z2, E[Yl[n]] = 0. Therefore,
interchanging max pooling and ReLU yields the normalized
version of (9):

Amax
l = ReLU

(
Ymax

l√
Em[Y2

l ] + ε
+ bl

)
. (31)

As in Section II-B, we replace Ymax
l by Ymod

l for any Gabor



channel l ∈ G, which yields the normalized version of (11):

Amod
l := ReLU

(
Ymod

l√
Em[Y2

l ] + ε
+ bl

)
. (32)

Implementing (32) as a deep learning architecture is cum-
bersome because Yl needs to be explicitly computed and kept
in memory, in addition to Ymod

l . Instead, we want to express
the second-order moment Em[Y2

l ] (in the denominator) as
a function of Ymod

l . To this end, we state the following
proposition.

Proposition 2: If we restrict the conditions of Proposition 1
to κ ≤ π/m, we have

∥Yl∥22 = 2
∥∥Ymod

l

∥∥2
2
. (33)

Proof: This result, once again, takes advantage of Shan-
non’s sampling theorem. The proof of our Proposition 2.10 in
[7] is based on similar arguments.

As for Proposition 1, the conditions of Proposition 2 are
approximately met. We therefore assume that (33) is satisfied,
and (32) becomes

Amod
l := ReLU

 Ymod
l√

1
2E2m[Ymod

l

2
] + ε

+ bl

 . (34)

In the case of ResNet, the bias layer (Bias) is therefore pre-
ceded by a batch normalization layer without mean centering
satisfying (34), which we call BN0. The second-order moment
of Ymod

l is computed on feature maps which are twice smaller
than Yl in both directions (hence the index “2m” in (34)),
which is the subsampling factor for the CMod operator.

APPENDIX D
IMPLEMENTATION DETAILS

In this section, we provide further information that comple-
ments the experimental details presented in Section III-A of
the main paper.

A. Subsampling Factor and Decomposition Depth

As explained in Section II-C, the decomposition depth J
is chosen such that m = 2J−1 (subsampling factor). Since
m = 4 in AlexNet and 2 in ResNet, we get J = 3 and 2,
respectively (see Table IV). Therefore, the number of dual-
tree filters Kdt := 2×4J is equal to 128 and 32, respectively.

B. Number of Freely-Trained and Gabor Channels

The split Lfree-Lgabor between the freely-trained and Gabor
channels, provided in the last row of Table IV, have been em-
pirically determined from the standard models. More specifi-
cally, considering standard AlexNet and ResNet-34 trained on
ImageNet (see Figs. 1a and 1c, respectively), we determined
the characteristics of each convolution kernel: frequency, ori-
entation, and coherence index (which indicates whether an
orientation is clearly defined). This was done by computing
the tensor structure [33]. Then, by applying proper thresholds,

TABLE IV
EXPERIMENTAL SETTINGS FOR OUR TWIN MODELS

WAlexNet WResNet
m (subsampling factor) 4 2
J (decomposition depth) 3 2

Lfree, Lgabor (output channels) 32, 32 40, 24

we isolated the Gabor-like kernels from the others, yielding
the approximate values of Lfree and Lgabor. Furthermore,
this procedure allowed us to draw a rough estimate of the
distribution of the Gabor-like filters in the Fourier domain,
which was helpful to design the mapping scheme shown in
Fig. 8, as explained below.

C. Filter Selection and Grouping

We then manually selected K ′
dt < Kdt filters, used in

(20). In particular, we removed the two low-pass filters,
which are outside the scope of our theoretical study. Besides,
for computational reasons, in WAlexNet we removed 32
“extremely” high-frequency filters which are clearly absent
from the standard model (see Fig. 8a). Finally, in WResNet
we removed the 14 filters whose bandwidths outreach the
boundaries of the Fourier domain [−π, π]

2 (see Fig. 8b).
These filters indeed have a poorly-defined orientation, since
a small fraction of their energy is located at the far end of
the Fourier domain [9, see Fig. 1, “Proposed DT-CWPT”].
Therefore, they somewhat exhibit a checkerboard pattern.5

As explained in Section B, once the DT-CWPT feature
maps have been manually selected, the output D′ ∈ SK′

dt

is sliced into Q groups of channels D(q) ∈ SKq . For each
group q, a depthwise linear mapping from D(q) to a bunch
of output channels Y(q) ∈ SLq is performed. Finally, the
wavelet block’s output feature maps Ygabor ∈ SLgabor are
obtained by concatenating the outputs Y(q) depthwise, for any
q ∈ {1 . . Q}. Figure 8 shows how the above grouping is made,
and how many output channels Lq each group q is assigned
to.

During training, the above process aims at selecting one
single DT-CWPT feature map among each group. This is
achieved through mixed-norm l∞/l1 regularization, as intro-
duced in (23). The regularization hyperparameters λq have
been chosen empirically. If they are too small, then regulariza-
tion will not be effective. On the contrary, if they are too large,
then the regularization term will become predominant, forcing
the trainable parameter vector α(q)

l to randomly collapse to 0
except for one element. The chosen values of λq are displayed
in Table V, for each group q of DT-CWPT feature maps.
The groups with only one feature map do not need any
regularization since this feature map is automatically selected.
The second and third rows of WAlexNet correspond to the
blue and magenta groups in Fig. 8a, respectively.

5Note that the same procedure could have been applied to WAlexNet, but
it was deemed unnecessary because the boundary filters were spontaneously
discarded during training.



(a) WAlexNet (J = 3)

(b) WResNet (J = 2)

Fig. 8. Mapping scheme from DT-CWPT feature maps D ∈ SKdt to
the wavelet block’s output Ygabor ∈ SLgabor . Each wavelet feature map
is symbolized by a small square in the Fourier domain, where its energy
is mainly located. The gray areas show the feature maps which have been
manually removed. Elsewhere, each group of feature maps D(q) ∈ SKq is
symbolized by a dark frame—in (b), Kq is always equal to 1. For each group
q ∈ {1 . . Q}, a number indicates how many output channels Lq are assigned
to it. The colored numbers in (a) refer to groups on which we have applied
l∞/l1-regularization. Note that, when inputs are real-valued, only the half-
plane of positive x-values is considered.

TABLE V
REGULARIZATION HYPERPARAMETERS

Model Filt. frequency Reg. param.

WAlexNet
[π/8, π/4[ –
[π/4, π/2[ 4.1 · 10−3

[π/2, π[ 3.2 · 10−4

WResNet any –

D. Benchmark against Blur-Pooling-based Approaches

As mentioned in Section II-D, we compare blur-pooling-
based antialiasing approach with ours. To apply static or
adaptive blur pooling to the WCNNs, we proceed as follows.
Following Zhang’s implementation, the wavelet block is not
antialiased if m = 2 as in ResNet, for computational reasons.
However, when m = 4 as in AlexNet, a blur pooling layer
is placed after ReLU, and the wavelet block’s subsampling
factor is divided by 2. Moreover, max pooling is replaced by
max-blur pooling. The size of the blurring filters is set to 3,
as recommended by Zhang [4].

APPENDIX E
ACCURACY VS CONSISTENCY: ADDITIONAL PLOTS

Figure 9 shows the relationship between consistency and
prediction accuracy of AlexNet and ResNet-based models on
ImageNet, for different filter sizes ranging from 1 (no blur
pooling) to 7 (heavy loss of high-frequency information). The
data for AlexNet on the validation set are displayed in the
main document, Fig. 3. As recommended by Zhang [4], the
optimal trade-off is generally achieved when the blurring filter
size is equal to 3. Moreover, in either case, at equivalent
level of consistency, replacing blur pooling by our CMod-
based antialiasing approach in the Gabor channels increases
accuracy.

APPENDIX F
COMPUTATIONAL COST

This section provides technical details about our estima-
tion of the computational cost (FLOPs), such as reported in
Table III, for one input image and one Gabor channel. This
metric was estimated in the case of standard 2D convolutions.

A. Average Computation Time per Operation

The following values have been determined experimentally
using PyTorch (CPU computations). They have been normal-
ized with respect to the computation time of an addition.

ts = 1.0 (addition);
tp = 1.0 (multiplication);
te = 0.75 (exponential);

tmod = 3.5 (modulus);
trelu = 0.75 (ReLU);
tmax = 12.0 (max pooling).

B. Computational Cost per Layer

In the following paragraphs, L ∈ N\{0} denotes the number
of output channels (depth) and N ′ ∈ N \ {0} denotes the size
of output feature maps (height and width). However, note that
N ′ is not necessary the same for all layers. For instance, in
standard ResNet, the output of the first convolution layer is
of size N ′ = 112, whereas the output of the subsequent max
pooling layer is of size N ′ = 56. For each type of layer, we
calculate the number of FLOPs required to produce a single
output channel l ∈ {1 . . L}. Moreover, we assume, without
loss of generality, that the model processes one input image
at a time.

a) Convolution Layers: Inputs of size (K×N×N) (input
channels, height and width); outputs of size (L × N ′ × N ′).
For each output unit, a convolution layer with kernels of size
(Nfilt ×Nfilt) requires KN2

filt multiplications and KN2
filt − 1

additions. Therefore, the computational cost per output chan-
nel is equal to

Tconv = N ′2 ((KN2
filt − 1) · ts +KN2

filt · tp
)
. (35)



(a) AlexNet, test set (50K images)

(b) ResNet-34, validation set (100K images)

(c) ResNet-34, test set (50K images)

Fig. 9. Classification accuracy (ten-crops) vs consistency, measuring the
stability of predictions to small input shifts (the lower the better for both
axes). The metrics have been computed on ImageNet-1K, on both validation
set (100K images set aside from the training set) and test set (50K images
provided as a separate dataset). For each model (BlurCNN, BlurWCNN and
CBlurWCNN), we increased the blurring filter size from 1 (i.e., no blur
pooling) to 7. The blue diamonds (no blur pooling) and red stars (blur pooling
with filters of size 3) correspond to the models for which evaluation metrics
have been reported in Table I (models trained after 90 epochs).

b) Complex Convolution Layers: Inputs of size (K ×
N ×N); complex-valued outputs of size (L×N ′ ×N ′). For
each output unit, a complex-valued convolution layer requires
2 × KN2

filt multiplications and 2 × (KN2
filt − 1) additions.

Computational cost per output channel:

TC conv = 2N ′2 ((KN2
filt − 1) · ts +KN2

filt · tp
)
. (36)

Note that, in our implementations, the complex-valued con-
volution layers are less expensive than the real-valued ones,
because the output size N ′ is twice smaller, due to the larger
subsampling factor.

c) Bias and ReLU: Inputs and outputs of size (L×N ′×
N ′). One evaluation for each output unit:

Tbias = N ′2 ts and Trelu = N ′2 trelu. (37)

d) Max Pooling: Outputs of size (L×N ′×N ′), with N ′

depending on whether subsampling is performed at this stage
(no subsampling when followed by a blur pooling layer). One
evaluation for each output unit:

Tmax = N ′2 tmax. (38)

e) Modulus Pooling: Complex-valued inputs and real-
valued outputs of size (L×N ′×N ′). One evaluation for each
output unit:

Tmod = N ′2 tmod. (39)

f) Batch Normalization: Inputs and outputs of size (L×
N ′×N ′). A batch normalization (BN) layer, described in (26),
can be split into several stages.

1) Mean: N ′2 additions.
2) Standard deviation: N ′2 multiplications, N ′2 additions

(second moment), N ′2 additions (subtract squared mean).
3) Final value: N ′2 additions (subtract mean), 2N ′2 multi-

plications (divide by standard deviation and multiplicative
coefficient).

Overall, the computational cost per image and output channel
of a BN layer is equal to

Tbn = N ′2 (4 ts + 3 tp) . (40)

g) Static Blur Pooling: Inputs of size (L× 2N ′ × 2N ′);
outputs of size (L×N ′ ×N ′). For each output unit, a static
blur pooling layer [4] with filters of size (Nb ×Nb) requires
N2

b multiplications and N2
b − 1 additions. The computational

cost per output channel is therfore equal to

Tblur = N ′2 ((N2
b − 1) · ts +N2

b · tp
)
. (41)

h) Adaptive Blur Pooling: Inputs of size (L × 2N ′ ×
2N ′); outputs of size (L×N ′×N ′). An adaptive blur pooling
layer [5] with filters of size (Nb × Nb) splits the L output
channels into Q := L/Lg groups of Lg channels that share
the same blurring filters. The adaptive blur pooling layer can
be decomposed into the following stages.

1) Generation of blurring filters using a convolution layer
with trainable kernels of size (Nb ×Nb): inputs of size
(L×2N ′×2N ′), outputs of size (QN2

b ×N ′×N ′). For
each output unit, this stage requires LN2

b multiplications
and LN2

b − 1 additions. The computational cost divided
by the number L of channels is therefore equal to

Tconv ablur = N ′2 N2
b

Lg

(
(LN2

b − 1) · ts + LN2
b · tp

)
.

(42)
Note that, despite being expressed on a per-channel basis,
the above computational cost depends on the number L of
output channels. This is due to the asymptotic complexity
of this stage in O(L2).



2) Batch normalization, inputs and outputs of size (QN2
b ×

N ′ ×N ′):

Tbn ablur = N ′2 N2
b

Lg
(4 ts + 3 tp) . (43)

3) Softmax along the depthwise dimension:

Tsftmx ablur = N ′2 N2
b

Lg
(te + ts + tp). (44)

4) Blur pooling of input feature maps, using the filter gen-
erated at stages (1)–(3): inputs of size (L× 2N ′ × 2N ′),
outputs of size (L × N ′ × N ′). The computational cost
per output channel is identical to the static blur pooling
layer, even though the weights may vary across channels
and spatial locations:

Tblur = N ′2 ((N2
b − 1) · ts +N2

b · tp
)
. (45)

Overall, the computational cost of an adaptive blur pooling
layer per input image and output channel is equal to

Tablur = N ′2 N2
b

Lg

[(
(L+ 1)N2

b + 3
)
· ts

+
(
(L+ 1)N2

b + 4
)
· tp + te

]
. (46)

We notice that an adaptive blur pooling layer has an asymptotic
complexity in O(N4

b), versus O(N2
b) for static blur pooling.

C. Application to AlexNet- and ResNet-based Models

Since they are normalized by the computational cost of
standard models, the FLOPs reported in Table III only depend
on the size of the convolution kernels and blur pooling filters,
respectively denoted by Nfilt and Nb ∈ N\{0}. In addition, the
computational cost of the adaptive blur pooling layer depend
on the number of output channels L as well as the number of
output channels per group Lg.

In practice, Nfilt is respectively equal to 11 and 7 for
AlexNet- and ResNet-based models. Moreover, Nb = 3,
L = 64 and Lg = 8. Actually, the computational cost is
largely determined by the convolution layers, including step
(1) of adaptive blur pooling.

APPENDIX G
MEMORY FOOTPRINT

This section provides technical details about our estimation
of the memory footprint for one input image and one output
channel, such as reported in Table III. This metric is generally
difficult to estimate, and is very implementation-dependent.
Hereafter, we consider the size of the output tensors, as well
as intermediate tensors saved by torch.autograd for the
backward pass. However, we didn’t take into account the
tensors containing the trainable parameters. To get the size
of intermediate tensors, we used the Python package Py-
TorchViz.6 These tensors are saved according to the following
rules.

6https://github.com/szagoruyko/pytorchviz

• Convolution (Conv), batch normalization (BN), Bias, max
pooling (MaxPool or Max), blur pooling (BlurPool), and
Modulus: the input tensors are saved, not the output.
When Bias follows Conv or BN, no intermediate tensor
is saved.

• ReLU, Softmax: the output tensors are saved, not the
input.

• If an intermediate tensor is saved at both the output of a
layer and the input of the next layer, its memory is not
duplicated. An exception is Modulus, which stores the
input feature maps as complex numbers.

• MaxPool or Max: a tensor of indices is kept in memory,
indicating the position of the maximum values. The
tensors are stored as 64-bit integers, so they weight twice
as much as conventional float-32 tensors.

• BN: four 1D tensors of length L are kept in memory:
computed mean and variance, and running mean and vari-
ance. For BN0 (34), where the variance is not computed,
only two tensors are kept in memory.

In the following paragraphs, we denote by L the number
of output channels, N the size of input images (height and
width), m the subsampling factor of the baseline models (4
for AlexNet, 2 for ResNet), Nb the blurring filter size (set to
3 in practice). For each model, a table contains the size of all
saved intermediate or output tensors. For example, the values
associated to “Layer1 → Layer2” correspond to the depth
(number of channel), height and width of the intermediate
tensor between Layer1 and Layer2.

A. AlexNet-based Models

a) No Antialiasing:

Conv → Bias → ReLU → MaxPool.

ReLU → MaxPool L N
m

N
m

MaxPool → output L N
2m

N
2m

MaxPool indices (×2) L N
2m

N
2m

The memory footprint for each output channel is equal to

=⇒ Sstd =
7

4

N2

m2
.

b) Static Blur Pooling:

Conv → Bias → ReLU → BlurPool → Max → BlurPool.

ReLU → BlurPool L 2N
m

2N
m

BlurPool → Max L N
m

N
m

Max → BlurPool L N
m

N
m

Max indices (×2) L N
m

N
m

BlurPool → output L N
2m

N
2m

=⇒ Sblur =
33

4

N2

m2
.

https://github.com/szagoruyko/pytorchviz


c) CMod-based Approach:

CConv → Modulus → Bias → ReLU.

CConv → Modulus 2L N
2m

N
2m

Modulus → Bias L N
2m

N
2m

ReLU → output L N
2m

N
2m

=⇒ Smod =
N2

m2
.

B. ResNet-based Models

a) No Antialiasing:

Conv → BN → Bias → ReLU → MaxPool.

Conv → BN L N
m

N
m

BN metrics 4L – –

ReLU → MaxPool L N
m

N
m

MaxPool → output L N
2m

N
2m

MaxPool indices (×2) L N
2m

N
2m

=⇒ Sstd =
11

4

N2

m2
+ 4 ≈ 11

4

N2

m2
.

b) Static Blur Pooling:

Conv → BN → Bias → ReLU → Max → BlurPool.

Conv → BN L N
m

N
m

BN metrics 4L – –

ReLU → Max L N
m

N
m

Max → BlurPool L N
m

N
m

Max indices (×2) L N
m

N
m

BlurPool → output L N
2m

N
2m

=⇒ Sblur =
21

4

N2

m2
+ 4 ≈ 21

4

N2

m2
.

c) Adaptive Blur Pooling:

Conv → BN → Bias → ReLU → Max → ABlurPool.

Conv → BN L N
m

N
m

BN metrics 4L – –

ReLU → Max L N
m

N
m

Max → ABlurPool L N
m

N
m

Max indices (×2) L N
m

N
m

ABlurPool → output L N
2m

N
2m

Generate adaptive blurring filter

Conv → BN → Bias → Softmax

Conv → BN LN2
b

Lg

N
2m

N
2m

BN metrics 4
LN2

b
Lg

– –

Softmax → output LN2
b

Lg

N
2m

N
2m

=⇒ Sablur =
21

4

N2

m2
+ 4 +

N2
b

Lg

(
N2

2m2
+ 4

)
≈ 21

4

N2

m2
+

N2
b

Lg

N2

2m2
.

d) CMod-based Approach:

CConv → Modulus → BN0 → Bias → ReLU.

CConv → Modulus 2L N
2m

N
2m

Modulus → BN0 L N
2m

N
2m

BN0 metrics 2L – –

ReLU → output L N
2m

N
2m

=⇒ Smod =
N2

m2
+ 2 ≈ N2

m2
.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] T. Wiatowski and H. Bölcskei, “A Mathematical Theory of Deep Con-
volutional Neural Networks for Feature Extraction,” IEEE Transactions
on Information Theory, vol. 64, no. 3, pp. 1845–1866, Mar. 2018.

[3] A. Azulay and Y. Weiss, “Why do deep convolutional networks gen-
eralize so poorly to small image transformations?” JMLR, vol. 20, no.
184, pp. 1–25, 2019.

[4] R. Zhang, “Making Convolutional Networks Shift-Invariant Again,” in
ICML, 2019.

[5] X. Zou, F. Xiao, Z. Yu, Y. Li, and Y. J. Lee, “Delving Deeper into Anti-
Aliasing in ConvNets,” IJCV, vol. 131, no. 1, pp. 67–81, Jan. 2023.

[6] J. Havlicek, J. Havlicek, and A. Bovik, “The analytic image,” in ICIP,
1997.

[7] H. Leterme, K. Polisano, V. Perrier, and K. Alahari, “On the Shift
Invariance of Max Pooling Feature Maps in Convolutional Neural
Networks,” arXiv:2104.05704, Oct. 2023.

[8] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in NeurIPS, 2014.

[9] I. Bayram and I. W. Selesnick, “On the Dual-Tree Complex Wavelet
Packet and M-Band Transforms,” IEEE Transactions on Signal Pro-
cessing, vol. 56, no. 6, pp. 2298–2310, Jun. 2008.

[10] A. Chaman and I. Dokmanic, “Truly Shift-Invariant Convolutional
Neural Networks,” in CVPR, 2021.

[11] M. A. Islam, S. Jia, and N. D. B. Bruce, “How Much Position
Information Do Convolutional Neural Networks Encode?” in ICLR,
2020.

[12] O. S. Kayhan and J. C. van Gemert, “On Translation Invariance in
CNNs: Convolutional Layers Can Exploit Absolute Spatial Location,”
in CVPR, 2020.

[13] V. Biscione and J. S. Bowers, “Convolutional Neural Networks Are Not
Invariant to Translation, but They Can Learn to Be,” Journal of Machine
Learning Research, vol. 22, no. 229, pp. 1–28, 2021.

[14] H. Kvinge, T. Emerson, G. Jorgenson, S. Vasquez, T. Doster, and J. Lew,
“In What Ways Are Deep Neural Networks Invariant and How Should
We Measure This?” in NeurIPS, 2022.

[15] N. Kingsbury and J. Magarey, “Wavelet Transforms in Image Process-
ing,” in Signal Analysis and Prediction, ser. Applied and Numerical
Harmonic Analysis. Birkhäuser, 1998, pp. 27–46.
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