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Abstract. This paper focuses on improving the mathematical interpretability of convolutional neural networks
(CNNs) in the context of image classification. Specifically, we tackle the instability issue arising in
their first layer, which tends to learn parameters that closely resemble oriented band-pass filters when
trained on datasets like ImageNet. Subsampled convolutions with such Gabor-like filters are prone
to aliasing, causing sensitivity to small input shifts. In this context, we establish conditions under
which the max pooling operator approximates a complex modulus, which is nearly shift invariant.
We then derive a measure of shift invariance for subsampled convolutions followed by max pooling. In
particular, we highlight the crucial role played by the filter’s frequency and orientation in achieving
stability. We experimentally validate our theory by considering a deterministic feature extractor
based on the dual-tree complex wavelet packet transform, a particular case of discrete Gabor-like
decomposition.
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1. Introduction. Understanding the mathematical properties of deep convolutional neural
networks (CNNs) [22] remains a challenging issue today. On the other hand, wavelet and multi-
resolution analysis are built upon a well-established mathematical framework. They have
proven to be efficient for tasks such as signal compression and denoising [48], and have been
widely used as feature extractors for signal, image and texture classification [17, 21, 37, 52].
There is a broad literature revealing strong connections between these two paradigms, as
discussed in subsections 1.1 and 1.2. Inspired by this line of research, the present paper
extends existing knowledge about CNN properties. Specifically, we assess the shift invariance
of max pooling feature maps through both theoretical and empirical approaches in the context
of image classification, by leveraging the properties of oriented band-pass filters.

1.1. Motivations and Main Contributions. CNNs rely on convolutions and nonlinear
pooling operations to transform input images into high-level feature vectors, which are in turn
processed for the task at hand. In the context of image classification, the feature vectors are fed
into a linear classifier. In order to achieve high classification accuracy, a convolutional network
is expected to retain discriminative image components while reducing intra-class variability
[9, 23]. A key property that is often desired in CNNs is their ability to remain invariant to small
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input transformations, such as translations, rotations, distortions, or scaling [6, 9, 26, 43, 51].
Since perfect invariance is seldom achieved, we shall also use the term stability to refer to this
behavior. This paper targets translations, also called shifts.

Furthermore, we focus on a configuration that is commonly observed in CNNs when trained
on image datasets: many convolution kernels in the first layer resemble band-pass oriented
waveforms [38, 53], referred to as Gabor-like filters. Whether extracted features are stable to
translations is partly addressed by [2, 56]. These papers point out that strided convolution and
pooling operators may greatly diverge from shift invariance, due to aliasing when subsampling
high-frequency signals. In response, recent works [56, 59] introduced an antialiasing method
based on low-pass filtering. They managed to increase both stability and predictive power of
CNNs, despite the resulting loss of information.

In the current paper, we show that, under specific conditions that we establish, the max
pooling operator can actually partially restore shift invariance. We unveil a connection be-
tween the output of the first max pooling layer and the modulus of complex Gabor-like coeffi-
cients, which is known to be nearly shift invariant. This work led us to develop a method for
improving shift invariance in CNNs which, unlike the previously-mentioned papers, preserves
high-frequency information [25].

1.2. Related Work. Analyzing the invariance properties of CNNs is critical as it enables
to identify their shortcomings and provides an opportunity to enhance their performance. In
recent years, several works focused on this topic.

1.2.1. Wavelet Scattering Networks. Most notably, Bruna and Mallat [9] developed a
family CNN-like architectures, named wavelet scattering networks (ScatterNets), based on a
succession of complex convolutions with wavelet filters followed by nonlinear modulus pooling.
They produce translation-invariant image representations which are stable to deformation
and preserve high-frequency information [28, 29]. A variation has been proposed by Sifre
and Mallat [43] to include rotational invariance. ScatterNets achieve strong performance on
handwritten digits and texture datasets, but do not scale well to more complex ones. To
overcome this, Oyallon et al. [32, 33] introduced hybrid ScatterNets, where the scattering
coefficients are fed into a standard CNN architecture, showing that the network complexity
can be reduced while keeping competitive performance. Derived models include ScatterNets
built upon the dual-tree complex wavelet transform [44], learnable and parametric ScatterNets
[10, 14], geometric ScatterNets operating on Riemanian manifolds [36], and graph ScatterNets
[13, 58]. Also worth mentioning, Czaja and Li [11, 12] studied ScatterNets based on uniform
covering frames, i.e., frames splitting the frequency domain into windows of roughly equal
size, much like DT-CWPT frames (as used in the present paper). Other works by Zarka et al.
[54, 55] proposed to sparsify wavelet scattering coefficients by learning a dictionary matrix,
to learn 1 × 1 convolutions between feature maps of scattering coefficients and to apply soft
thresholding to reduce within-class variability.

ScatterNets are specifically designed to meet some desired properties. As deep learning
architectures with well-established mathematical properties, they are sometimes used as ex-
planatory models for standard, freely-trained networks. However, whether their properties are
transferable to a broader class of models is unclear, because the former rely on complex-valued
convolutions whereas more conventional architectures exclusively employ real-valued kernels.



ON THE SHIFT INVARIANCE OF MAX POOLING FEATURE MAPS IN CNNS 3

Moreover, the modulus operator is used as an activation and pooling layer in ScatterNets,
whereas standard CNNs implement pointwise nonlinear operators such as ReLU and spatial
pooling layers such as max pooling. This limitation has been pointed out by Tygert et al. [47]
as an argument in favor of complex-valued CNNs. In this context, our work seeks evidence
that properties established for complex-valued networks are—to some extent—embedded in
standard architectures.

1.2.2. Invariance Studies in CNNs. Wiatowski and Bölcskei [51] considered a wide va-
riety of feature extractors involving convolutions, Lipschitz-continuous non-linearities and
pooling operators. The paper shows that outputs become more translation invariant with in-
creasing network depth. However, these results do not fully extend to the discrete framework,
because subsampled convolutions with band-pass real-valued filters can introduce aliasing ar-
tifacts, resulting in instability to translations [2, 56]. The current paper specifically addresses
this issue.

Another line of work is focused on modeling and studying CNNs from the point of view
of convolutional kernel networks [5, 7, 8, 40]. These authors showed that certain classes
of CNNs are contained into the reproducing kernel Hilbert space (RKHS) of a multilayer
convolutional kernel representation. As such, stability metrics are estimated, based on the
RKHS norm which is difficult to control in practice. Kernel representations do not seem to
suffer from aliasing effects; this can be explained by the Gaussian pooling layers that have been
employed instead of max pooling: by discarding high-frequency information, shift invariance
is preserved. Finally, some papers studied stability of CNNs in a broader sense, measured in
terms of Lipschitz continuity [3, 35, 45, 49, 57]. However, the Lipschitz bounds, which have
been obtained theoretically, are generally several orders of magnitude higher than empirical
results. This discrepancy may be due to the fact that these bounds were obtained for generic
situations and represent overly conservative worst-case scenarios, rather than typical real-
world situations. Furthermore, the specific case of convolutions with band-pass Gabor-like
filters have been overlooked, except for Pérez et al. [35].

In summary, we have identified the following blind spots in the literature, regarding the
topic of studying shift invariance in CNNs.

• The effect of the max pooling operator on network stability under small input shifts
has not been investigated, particularly when used in combination with Gabor-like
convolutions.
• While the shift invariance of CNNs tends to increase with network depth in the con-
tinuous framework, in the discrete case, the presence of subsampled convolutions with
oriented band-pass filters can lead to aliasing artifacts. To our knowledge, the litera-
ture lacks theoretical studies that take these aliasing effects into account.
• Although extensive studies have been conducted on complex-valued convolutions fol-
lowed by modulus, a link is missing to extend these results to standard CNNs, which
implement real-valued convolutions and spatial pooling operators.

All these points have been tackled in the present paper, from both theoretical and empirical
perspectives.

1.3. Paper Outline. In what follows, l2R(Z2) and l2C(Z2) represent the discrete spaces
of square-summable two-dimensional sequences with values in R and C, respectively. Let



4 H. LETERME, K. POLISANO, V. PERRIER, AND K. ALAHARI

W ∈ l2C(Z2) denote a two-dimensional band-pass, oriented and analytic Gabor-like filter, for
which a formal definition will be provided in (2.5). We first consider an operator, referred
to as real-max-pooling (RMax), which computes the subsampled cross-correlation between an
input image X ∈ l2R(Z2) and the real part of W; then calculates the maximum value over a
sliding discrete grid:

(1.1) Umax
m, q [W] : X 7→ MaxPoolq

((
X ∗ ReW

)
↓ m

)
,

where m ∈ N \ {0} denotes a subsampling factor, V denotes the “flipped” sequence for any
given V ∈ l2R(Z2) or l2C(Z2), satisfying, for any n ∈ Z2,

(1.2) V[n] := V[−n],

and ∗, ↓ respectively refer to the convolution and subsampling operations, defined by

(1.3) (X ∗V)[n] :=
∑
p∈Z2

X[p] V[n− p] and (Y ↓ m)[n] := Y[mn].

In the above expression, MaxPoolq selects the maximum value over a sliding grid of size
(2q + 1) × (2q + 1), with a subsampling factor of 2. More formally, for any Y ∈ l2R(Z2) and
any n ∈ Z2,

(1.4) MaxPoolq(Y)[n] := max
∥p∥∞≤q

Y[2n+ p].

On the other hand, we consider an operator, referred to as complex-modulus (CMod), com-
puting the modulus of subsampled cross-correlation between X and W:

(1.5) Umod
m [W] : X 7→

∣∣(X ∗W) ↓ (2m)
∣∣ .

First, we show that, under the Gabor hypothesis, CMod is stable with respect to small
input shifts. We then establish conditions on the filter’s frequency and orientation under
which CMod and RMax produce comparable outputs:

(1.6) Umod
m [W] (X) ≈ Umax

m, q [W] (X).

We deduce a measure of shift invariance for RMax operators, which benefits from the stability
of CMod. Next, we extend our results to multichannel operators (i.e., applied on RGB input
images), such as implemented in conventional CNN architectures. Our framework therefore
provides a theoretical grounding to study these networks.

Remark 1.1. In the above definitions, cross-correlations are computed with a subsampling
factor which is twice larger for CMod, compared to RMax. However, since max pooling is
also computed with subsampling, both operators have the same subsampling factor of 2m.

We assess our theoretical findings on a deterministic setting based on the dual-tree complex
wavelet packet transform (DT-CWPT), a particular case of discrete Gabor-like decomposition
with perfect reconstruction properties [4]. DT-CWPT spawns a set of convolution kernels
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which tile the Fourier domain into square regions of identical size. Such kernels possess
characteristics that are comparable to those found in the first convolution layer of CNNs after
training with image datasets such as ImageNet [39]. More specifically, given an input image,
we compute the mean square error between the outputs of CMod and RMax, for each wavelet
packet filter. We then observe that shift invariance, when measured on RMax feature maps,
is nearly achieved when they remain close to CMod outputs. We therefore establish a domain
of validity for shift invariance of the RMax operator.

Prior to this work, we presented a preliminary study [24], where we experimentally showed
that an operator based on the real part of DT-CWPT can mimic the behavior of the first
convolution layer with fewer parameters, while keeping the network’s predictive power. Our
model was solely based on real-valued filters, which are prone to aliasing. Yet, it produced
relatively stable outputs when compared with other models based on the standard, poorly-
oriented wavelet packet transform. At the same time, we became aware of a preliminary
work by Waldspurger [50, pp. 190–191], suggesting a potential connection between the com-
binations “real wavelet transform → max pooling” on the one hand and “complex wavelet
transform → modulus” on the other hand. Following this idea, we decided to study whether
invariance properties of complex moduli could somehow be captured by the max pooling oper-
ator. As shown in the present paper, Waldspurger’s work does not fully extend to the discrete
framework. We address this issue by adopting a probabilistic point of view.

2. Shift Invariance of CMod Outputs. The primary goal of this paper is to theoretically
establish conditions for near-shift invariance at the output of the first max pooling layer. In
this section, we start by proving shift invariance of CMod operators. Then, in section 3, we
establish conditions under which RMax and CMod produce closely related outputs. Finally,
in section 4, we derive a probabilistic measure of shift invariance for RMax.

2.1. Notations. The complex conjugate of any number z ∈ C is denoted by z∗. For any
p ∈ R>0 ∪ {∞}, x ∈ R2 and r ∈ R+, we denote by Bp(x, r) ⊂ R2 the closed lp-ball with
center x and radius r. When x = 0, we write Bp(r).

Continuous Framework. Considering a measurable subset E of R2, we denote by L2
C(E)

the Hilbert space of square-integrable functions F : E → C. Whenever we talk about equality
in Lp

C(E) or inclusion in E, it shall be understood as “almost everywhere with respect to
the Lebesgue measure.” Besides, we denote by L2

R(E) ⊂ L2
C(E) the subspace of real-valued

functions. For any F ∈ L2
C(R2), F denotes its flipped version: F (x) := F (−x).

The 2D Fourier transform of any F ∈ L2
C(R2) is denoted by F̂ ∈ L2

C(R2), such that

(2.1) ∀ν ∈ R2, F̂ (ν) :=

∫∫
R2

F (x)e−i⟨ν,x⟩ d2x.

For any ε > 0 and ν ∈ R2, we denote by V
(
ν, ε

)
⊂ L2

C(R2) the set of functions whose Fourier
transform is supported in a square region of size ε× ε centered in ν:

(2.2) V
(
ν, ε

)
:=
{
Ψ ∈ L2

C(R2)
∣∣∣ supp Ψ̂ ⊂ B∞(ν, ε/2)

}
.

ν and ε are respectively referred to as characteristic frequency and bandwidth. Finally, for
any h ∈ R2, we consider the translation operator, denoted by Th, defined by

(2.3) ThF : x 7→ F (x− h).
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Discrete Framework. We denote by l2C(Z2) the space of 2D complex-valued square-sum-
mable sequences, represented by straight capital letters. Indexing is made between square
brackets: ∀X ∈ l2C(Z2), ∀n ∈ Z2, X[n] ∈ C, and we denote by l2R(Z2) ⊂ l2C(Z2) the subset of
real-valued sequences. For any V ∈ l2C(Z2), V denotes its “flipped” version as defined in (1.2).
The convolution and subsampling operators, respectively denoted by ∗ and ↓, are defined in
(1.3). 2D images, feature maps and convolution kernels are considered as elements of l2C(Z2).
Besides, multichannel arrays of 2D sequences are denoted by bold straight capital letters,
for instance: X := (Xk)k∈{0..K−1}. Note that indexing starts at 0 to comply with practical
implementations.

The 2D discrete-time Fourier transform of any X ∈ l2C(Z2), denoted by X̂ ∈ L2
C([−π, π]

2),
is defined by

(2.4) ∀θ ∈ [−π, π]2 , X̂(θ) :=
∑
n∈Z2

X[n]e−i⟨θ,n⟩.

For any κ ∈ ]0, 2π] and θ ∈ B∞(π), we denote by J
(
θ, κ

)
⊂ l2C(Z2) the set of 2D sequences

whose Fourier transform is supported in a square region of size κ× κ centered in θ:

(2.5) J
(
θ, κ

)
:=
{
W ∈ l2C(Z2)

∣∣∣ supp Ŵ ⊂ B∞(θ, κ/2)
}
.

As in the discrete framework, θ and κ are respectively referred to as characteristic frequency
and bandwidth. The elements of J

(
θ, κ

)
are designated as Gabor-like filters.

Remark 2.1. The support B∞(θ, κ/2) actually lives in the quotient space [−π, π]2 /(2π
Z2). Consequently, when θ is close to an edge, a fraction of this region is located at the far
end of the frequency domain. From now on, the choice of θ and κ is implicitly assumed to
avoid such a situation.

2.2. Intuition. In many CNNs for computer vision, input images are first transformed
through subsampled (or strided) convolutions. For instance, in AlexNet, convolution kernels
are of size 11×11 and the subsampling factor is equal to 4. Figure 1 displays the corresponding
kernels after training with ImageNet. This linear transform is generally followed by rectified
linear unit (ReLU) and max pooling.

We can observe that many kernels display oscillating patterns with well-defined orienta-
tions (Gabor-like filters). We denote by V ∈ l2R(Z2) one of these “well-behaved” filters. Its
Fourier spectrum roughly consists in two bright spots which are symmetric with respect to
the origin.1 Now, we consider a complex-valued companion W ∈ l2C(Z2) such that

(2.6) Ŵ(ω) :=
(
1 + sgn⟨ω, u⟩

)
· V̂(ω) ∀ω ∈ [−π, π]2 ,

where u denotes a unit vector orthogonal to the filter’s orientation.
We can show that V is the real part of W, and that W = V + iH(V), where H denotes

the two-dimensional Hilbert transform as introduced by Havlicek et al. [16]. It satisfies

(2.7) Ĥ(V)(ω) := −i sgn⟨ω, u⟩ V̂(ω).

1Actually, the Fourier transform of any real-valued sequence is centrally symmetric: V̂(−ω) = V̂(ω)
∗
. The

specificity of well-oriented filters lies in the concentration of their power spectrum around two precise locations.
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Figure 1. Spatial (left) and Fourier (right) representations of convolution kernels in the first layer of
AlexNet, after training with ImageNet ILSVRC 2012-2017 [39]. Each kernel connects the 3 RGB input
channels to one of the 64 output channels.

(a) (b) (c) (d)

Figure 2. (a), (b): Real and imaginary parts of a Gabor-like filter W as defined in (2.6). (c), (d):
Magnitude spectra (modulus of the Fourier transform) of V and W, respectively.

As a consequence, Ŵ is equal to 2V̂ on one half of the Fourier domain, and 0 on the other half.
Therefore, only one bright spot remains in the spectrum. We refer the reader to Figure 2 for
visual example of complex-valued Gabor-like filter. It turns out that such complex filters with
high frequency resolution produce stable signal representations, as we will see in section 2. In
the subsequent sections, we then wonder whether this property is kept when considering the
max pooling of real-valued convolutions.

In what follows, W will be referred to as a discrete Gabor-like filter, and the coefficients
resulting from the convolution with W will be referred to as discrete Gabor-like coefficients.
The aim of this section is to show that, under the Gabor hypothesis on the convolution kernels
W ∈ l2C(Z2), CMod is nearly shift-invariant. To clarify, we establish that

(2.8) Umod
m [W] (X) ≈ Umod

m [W] (TuX),

for “small” translation vectors u ∈ R2, where a formal definition of the translation operator
will be defined in (2.34). This result is hinted by Kingsbury and Magarey [20] but not formally
proven.
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2.3. Continuous Framework. We introduce several results regarding functions defined on
the continuous space R2. Near-shift invariance on discrete 2D sequences will then be derived
from these results by taking advantage of sampling theorems. Lemma 2.2 below is adapted
from Waldspurger [50, pp. 190–191].

Lemma 2.2. Given ε > 0 and ν ∈ R2, let Ψ ∈ V
(
ν, ε

)
denote a complex-valued filter

such as defined in (2.2). Now, for any real-valued function F ∈ L2
R(R2), we consider the

complex-valued function F0 ∈ L2
C(R2) defined by

(2.9) F0 : x 7→ (F ∗ Ψ)(x) ei⟨ν,x⟩.

Then F0 is low-frequency. Specifically,

(2.10) supp F̂0 ⊂ B∞(ε/2).

Proof. Applying the Fourier transform on (2.9) yields, for any ξ ∈ R2,

(2.11) F̂0(ξ) =
̂(F ∗ Ψ)(ξ − ν) = Tν

(
F̂ Ψ̂

)
(ξ).

By hypothesis on Ψ , we have

(2.12) supp(F̂ Ψ̂) ⊂ supp Ψ̂ ⊂ B∞(−ν, ε/2).

The translation operator Tν shifts the support with respect to ν, which yields (2.10).

On the other hand, the following proposition provides a shift invariance bound for low-
frequency functions such as introduced above.

Proposition 2.3. For any F0 ∈ L2
R(R2) such that supp F̂0 ⊂ B∞(ε/2), and any h ∈ R2,

(2.13) ∥ThF0 − F0∥L2 ≤ α(εh) ∥F0∥L2 ,

where we have defined

(2.14) α : τ 7→
∥τ∥1
2

.

Proof. Using the 2D Plancherel formula, we compute

∥ThF0 − F0∥2L2 =
1

4π2

∥∥∥T̂hF0 − F̂0

∥∥∥2
L2

=
1

4π2

∫∫
B∞(ε/2)

∣∣∣F̂0(ξ)
∣∣∣2 ∣∣∣e−i⟨h, ξ⟩ − 1

∣∣∣2 d2ξ

=
1

4π2

∫∫
B∞(ε/2)

∣∣∣F̂0(ξ)
∣∣∣2 (2− 2 cos ⟨h, ξ⟩

)
d2ξ

≤ 1

4π2

∫∫
B∞(ε/2)

∣∣∣F̂0(ξ)
∣∣∣2 |⟨h, ξ⟩|2 d2ξ,
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because cos t ≥ 1 − t2

2 . Note that the integral is computed on a compact domain because,

according to Lemma 2.2, supp F̂0 ⊂ B∞(ε/2). Now, we use the Cauchy-Schwarz inequality to
compute:

∀ξ ∈ B∞(ε/2), |⟨h, ξ⟩| ≤ ∥h∥1 · ∥ξ∥∞
≤ ε

2
∥h∥1 .

Therefore,

(2.15) ∥ThF0 − F0∥2L2 ≤
ε

4
∥h∥21 ∥F0∥2L2 ,

which yields the result.

2.4. Adaptation to Discrete 2D Sequences. Given κ ∈ ]0, 2π] and θ ∈ B∞(π), let
W ∈ J

(
θ, κ

)
denote a discrete Gabor-like filter such as defined in (2.5). For any image

X ∈ l2C(Z2) with finite support and any subsampling factorm ∈ N\{0}, we express (X∗W) ↓ m
using the continuous framework introduced above, and derive an invariance formula.

For any sampling interval s ∈ R>0, let Φ
(s) ∈ L2

R(R2) denote the Shannon scaling function
parameterized by s, such that

(2.16) Φ̂(s) := s1B∞(π/s).

This 2D function is a tensor product of scaled and normalized sinc functions. For any n ∈ Z2,

we denote by Φ
(s)
n a shifted version of Φ(s), satisfying

(2.17) Φ
(s)
n (x) := Φ(s)(x− sn).

Then,
{
Φ
(s)
n

}
n∈Z2 is an orthonormal basis of

(2.18) V(s) :=
{
F ∈ L2

C(R2)
∣∣ supp F̂ ⊂ B∞(π/s)

}
.

Then, using the notation introduced in (2.2), we have V(s) = V(0, 2π/s).
We now consider the following lemma.

Lemma 2.4. Let s > 0. For any F ∈ V(s) and any ξ ∈ B∞(π/s), we have

(2.19) F̂ (ξ) = s X̂(sξ),

where X ∈ l2C(Z2) is a uniform sampling of F , defined such that X[n] := s F (sn), for any
n ∈ Z2. Besides, we have the following norm equality:

(2.20) ∥F∥L2 = ∥X∥2 .



10 H. LETERME, K. POLISANO, V. PERRIER, AND K. ALAHARI

Proof. Since F ∈ V(s), the two-dimensional version of Shannon’s sampling theorem [27,
Theorem 3.11, p. 81] yields

(2.21) F =
∑
n∈Z2

X[n]Φ
(s)
n , and F̂ =

∑
n∈Z2

X[n] Φ̂
(s)
n .

Besides, using (2.16), we can show that, for any ξ ∈ B∞(π/s),

(2.22) Φ̂
(s)
n (ξ) = Φ̂(s)(ξ) e−i⟨sξ,n⟩ = s e−i⟨sξ,n⟩.

Therefore, plugging (2.22) into (2.21) proves (2.19).
Then, by combining (2.19) with the Plancherel formula, we get

∥F∥2L2 =
1

4π2
∥∥F̂∥∥2

L2

=
1

4π2

∫∫
B∞(π/s)

∣∣F̂ (ξ)∣∣2 d2ξ
=

1

4π2

∫∫
B∞(π/s)

∣∣s X̂(sξ)∣∣2 d2ξ.
The integral is performed on B∞(π/s) because F ∈ V(s). Then, by applying the change of
variable ξ′ ← sξ, we get

∥F∥2L2 =
1

4π2

∫∫
B∞(π)

∣∣X̂(ξ′)∣∣2 d2ξ′
=

1

4π2
∥∥X̂∥∥2

L2 = ∥X∥22 ,

hence (2.20), which concludes the proof.

We then get the following proposition, which draws a bond between the discrete and
continuous frameworks.

Proposition 2.5. Let X ∈ l2R(Z2) denote an input image with finite support, and W ∈
J
(
θ, κ

)
. Considering a sampling interval s ∈ R>0, we define FX and ΨW ∈ V(s) such that

(2.23) FX :=
∑
n∈Z2

X[n]Φ
(s)
n and ΨW :=

∑
n∈Z2

W[n]Φ
(s)
n .

Then,

(2.24) ΨW ∈ V
(
θ/s, κ/s

)
.

Moreover, for all n ∈ Z,

(2.25) X[n] = s FX(sn); W[n] = s ΨW(sn),

and, for a given subsampling factor m ∈ N \ {0},

(2.26)
(
(X ∗W) ↓ m

)
[n] =

(
FX ∗ ΨW

)
(msn) .
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Proof. First, FX and ΨW are well defined because X ∈ l2R(Z2) and W ∈ l2C(Z2). By
construction, FX and ΨW ∈ V(s). Therefore, according to Shannon’s sampling theorem [27,
Theorem 3.11, p. 81],

(2.27) FX := s
∑
n∈Z2

FX(sn)Φ
(s)
n and ΨW := s

∑
n∈Z2

ΨW(sn)Φ
(s)
n .

By uniqueness of decompositions in an orthonormal basis, we get (2.25). Moreover, using
(2.19) in Lemma 2.4, we get, for any ξ ∈ B∞(π/s),

(2.28) Ψ̂W(ξ) = s Ŵ(sξ).

Since Ψ̂W(ξ) = 0 outside B∞(π/s), (2.28) is true for any ξ ∈ R2. Therefore, by hypothesis on
W,

(2.29) supp Ψ̂W ⊂ B∞
(
θ/s, κ/(2s)

)
,

which yields (2.24).
We now prove (2.26). For n ∈ Z2, we compute:

(FX ∗ ΨW) (msn) =

∫∫
R2

FX(msn− x)ΨW(x) d2x

=

∫∫
R2

∑
p∈Z2

X[p]Φ
(s)
p (msn− x)ΨW(x) d2x

=
∑
p∈Z2

X[p]

∫∫
R2

Φ
(s)
p (msn− x)ΨW(x) d2x.

The sum-integral interchange is possible because X has a finite support. Then:

(FX ∗ ΨW) (msn) =
∑
p∈Z2

X[p]

∫∫
R2

ΨW(x)Φ(s)
(
s(mn− p)− x

)
d2x(2.30)

=
∑
p∈Z2

X[p]
(
ΨW ∗ Φ(s)

)(
s(mn− p)

)
(2.31)

Since {Φ(s)
n }n∈Z2 is an orthonormal basis of V(s), the definition of ΨW in (2.23) implies, for

any p′ ∈ Z2,

(2.32) W[p′] =
〈
ΨW, Φ

(s)
−p′

〉
=
(
ΨW ∗ Φ(s)

)
(sp′),

because Φ(s) is even. Therefore, plugging (2.32) with p′ ← (mn− p) into (2.31) yields

(2.33) (FX ∗ ΨW) (msn) =
∑
p∈Z2

X[p]W[mn− p] =
(
X ∗W

)
[mn],

hence the result.
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Proposition 2.5 introduces a latent subspace of L2
R(R2) from which input images are uni-

formly sampled. This allows us to define, for any u ∈ R2, a translation operator Tu on discrete
sequences, even if u has non-integer values:

(2.34) TuX[n] := s TsuFX(sn),

where FX is defined in (2.23). We can indeed show that this definition is independent from
the choice of sampling interval s > 0. Besides, given X ∈ l2R(Z2), we have

∀p ∈ Z2, TpX[n] = X[n− p];(2.35)

∀u, v ∈ R2, Tu(TvX) = Tu+vX,(2.36)

which shows that Tu corresponds to the intuitive idea of a translation operator. Expressions
(2.35) and (2.36) are direct consequence of the following lemma, which bonds the shift operator
in the discrete and continuous frameworks.

Lemma 2.6. For any X ∈ l2R(Z2) and any u ∈ R2,

(2.37) FTuX = TsuFX.

Proof. Let u ∈ R2. By definition of FTuX and TuX,

(2.38) FTuX = s
∑
n∈Z2

TsuFX(sn)Φ
(s)
n .

On the other hand, FX ∈ V(s) by construction. Therefore, TsuFX ∈ V(s). Then, according to
Shannon’s sampling theorem [27, Theorem 3.11, p. 81], we get

(2.39) TsuFX = s
∑
n∈Z2

TsuFX(sn)Φ
(s)
n ,

which concludes the proof.

We now consider the following corollary to Proposition 2.5.

Corollary 2.7. For any shift vector u ∈ R2, we have

(2.40)
(
(TuX ∗W) ↓ m

)
[n] =

(
TsuFX ∗ ΨW

)
(msn) .

Proof. Applying (2.26) in Proposition 2.5 with X← TuX, we get

(2.41)
(
(TuX ∗W) ↓ m

)
[n] =

(
FTuX ∗ ΨW

)
(msn) ,

and Lemma 2.6 concludes the proof.
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2.5. Shift Invariance in the Discrete Framework. We consider the CMod operator de-
fined in (1.5). For the sake of conciseness, in what follows we will write Umod

m instead of
Umod
m [W], when no ambiguity is possible. First, we state the following lemma.

Lemma 2.8. For any input image X ∈ l2R(Z2) with finite support, and any Gabor-like filter
W ∈ J

(
θ, κ

)
, we consider the low-frequency function

(2.42) F0 : x 7→ (FX ∗ ΨW)(x) ei⟨θ/s,x⟩,

with FX and ΨW satisfying (2.23). If κ ≤ π/m, then

(2.43) F0 ∈ V(s
′).

Moreover, for any h ∈ R2,

(2.44)
∑
n∈Z2

∣∣∣ThF0(s
′n)− F0(s

′n)
∣∣∣2 = 1

s′2
∥ThF0 − F0∥2L2 ,

where we have denoted s′ := 2ms. Finally,

(2.45)
∥∥Umod

m X
∥∥
2
=

1

s′
∥F0∥L2 .

Proof. Let us write:

(2.46)
∑
n∈Z2

∣∣ThF0(s
′n)− F0(s

′n)
∣∣2 = ∑

n∈Z2

∣∣F1(s
′n)
∣∣2 = 1

s′2
∥X1∥22 ,

where we have denoted, for any n ∈ Z2,

(2.47) F1 := ThF0 − F0 and X1[n] := s′F1(s
′n).

According to Proposition 2.5 (2.24), ΨW ∈ V
(
θ/s, κ/s

)
. Therefore, according to Lemma 2.2,

(2.48) supp F̂0 ⊂ B∞

( κ
2s

)
.

Moreover, by hypothesis, κ ≤ π/m; thus,

(2.49) B∞

( κ
2s

)
⊂ B∞

(π
s′

)
,

which yields (2.43), and F1 ∈ V(s
′). Then, according to Lemma 2.4 (2.20) with X ← X1,

F ← F1 and s← s′,

(2.50) ∥X1∥2 = ∥F1∥L2 = ∥ThF0 − F0∥L2 .

Therefore, plugging (2.50) into (2.46) yields (2.44).
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Besides, according again to Lemma 2.4,

(2.51) ∥F0∥2L2 = ∥X0∥22 ,

where we have defined, for any n ∈ Z2,

(2.52) X0[n] := s′F0(s
′n).

Then,

∥X0∥22 = s′2
∑
n∈Z2

∣∣(FX ∗ ΨW

)
(s′n)

∣∣2 (acc. to (2.42))

= s′2
∑
n∈Z2

∣∣(X ∗W) ↓ (2m)[n]
∣∣2 (acc. to Proposition 2.5 with m← 2m)

= s′2
∥∥Umod

m X
∥∥2
2
. (acc. to (1.5))

Finally, plugging this result into (2.51) yields (2.45) and concludes the proof.

We are now ready to state the main result about shift invariance of CMod outputs.

Theorem 2.9 (Shift invariance of CMod). Let W ∈ J
(
θ, κ

)
denote a discrete Gabor-like

filter and m ∈ N \ {0} denote a subsampling factor. Then, under the following condition:

(2.53) κ ≤ π/m,

we have, for any input image X ∈ l2R(Z2) with finite support and any translation vector u ∈ R2,

(2.54)
∥∥Umod

m (TuX)− Umod
m X

∥∥
2
≤ α(κu)

∥∥Umod
m X

∥∥
2
,

where α has been defined in (2.14).

Proof. As in Lemma 2.8, we consider the low-frequency function F0 satisfying (2.42), and
denote s′ := 2ms. We can write

(2.55) |FX ∗ ΨW| = |F0| and |TsuFX ∗ ΨW| = |TsuF0|.

Recall that Umod
m X =

∣∣(X ∗W) ↓ (2m)
∣∣, such as defined in (1.5). According to Proposition 2.5

(2.26) and Corollary 2.7 (2.40) with m← 2m, we therefore get

Umod
m X[n] =

∣∣F0(s
′n)
∣∣ ;(2.56)

Umod
m (TuX)[n] =

∣∣(TsuF0)(s
′n)
∣∣ .(2.57)

Then, using (2.56), (2.57) and the reverse triangle inequality,∥∥Umod
m (TuX)− Umod

m X
∥∥2
2
=
∑
n∈Z2

∣∣∣∣∣(TsuF0)(s
′n)
∣∣− ∣∣F0(s

′n)
∣∣∣∣∣2

≤
∑
n∈Z2

∣∣∣(TsuF0)(s
′n)− F0(s

′n)
∣∣∣2.
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Since condition (2.53) is satisfied, we can use Lemma 2.8 (2.44) with h← su:

(2.58)
∥∥Umod

m (TuX)− Umod
m X

∥∥2
2
≤ 1

s′2
∥TsuF0 − F0∥2L2

Now, according to Proposition 2.3 with ε ← κ/s and h ← su, we then get the following
bound:

(2.59)
∥∥Umod

m (TuX)− Umod
m X

∥∥2
2
≤ α(κu)2

s′2
∥F0∥2L2 .

Finally, using Lemma 2.8 (2.45) yields (2.54), which completes the proof.

Interestingly, the reference value used in Theorem 2.9, i.e.,
∥∥Umod

m X
∥∥
2
, is fully shift-

invariant, as stated in the following proposition.

Proposition 2.10. Let W ∈ J
(
θ, κ

)
and m ∈ N \ {0}. Under condition (2.53), we have,

for any X ∈ l2R(Z2) and any u ∈ R2,

(2.60)
∥∥Umod

m (TuX)
∥∥
2
=
∥∥Umod

m X
∥∥
2
.

Proof. Let X ∈ l2R(Z2) and s > 0. We consider F0 ∈ L2
C(R2) as the “low-frequency”

function satisfying (2.42). Again, we introduce s′ := 2ms and X0 ∈ l2C(Z2) satisfying (2.52).

Moreover, for any Y ∈ l2R(Z2), we denote by F
(s′)
Y the Shannon interpolation of Y parameter-

ized by s′, analogously to (2.23):

(2.61) F
(s′)
Y :=

∑
n∈Z2

Y[n]Φ
(s′)
n .

On the one hand, Lemma 2.8 provides (2.45). On the other hand, we seek a similar result
with X← TuX. For this purpose, (2.57) can be rewritten

(2.62) Umod
m (TuX)[n] =

∣∣Ts′u′F0(s
′n)
∣∣,

with u′ := u/(2m). Besides, according to Lemma 2.8 (2.43), F0 ∈ V(s
′). Therefore, Shannon’s

sampling theorem [27, Theorem 3.11, p. 81] with s← s′ yields

F0 = s′
∑
n∈Z2

F0(s
′n)Φ

(s′)
n

=
∑
n∈Z2

X0[n]Φ
(s′)
n = F

(s′)
X0

,

where we have used the notations introduced in (2.52) and (2.61). Then, using Lemma 2.6
with X← X0, u← u′ and s← s′, we get

(2.63) F
(s′)
Tu′X0

= Ts′u′F
(s′)
X0

= Ts′u′F0.

Besides, (2.25) (from Proposition 2.5) with X← Tu′X0 and s← s′ becomes

(2.64) Tu′X0[n] = s′ F
(s′)
Tu′X0

(s′n),



16 H. LETERME, K. POLISANO, V. PERRIER, AND K. ALAHARI

and inserting (2.63) into (2.64) yields

(2.65) Tu′X0[n] = s′ Ts′u′F0(s
′n).

Therefore, (2.62) and (2.65) imply

(2.66)
∥∥Umod

m (TuX)
∥∥
2
=

1

s′
∥Tu′X0∥2 .

Moreover, since F0 ∈ V(s
′), and according to (2.65), we can use Lemma 2.4 with s ← s′,

F ← Ts′u′F0 and X← Tu′X0. We get

(2.67) ∥Tu′X0∥2 = ∥Ts′u′F0∥L2 = ∥F0∥L2 ,

and plugging (2.67) into (2.66) yields

(2.68)
∥∥Umod

m (TuX)
∥∥
2
=

1

s′
∥F0∥L2 .

Finally, considering Lemma 2.8 (2.45) concludes the proof.

3. From CMod to RMax. CMod operators are found in ScatterNets and complex-valued
convolutional networks [47]. However, they are absent from conventional, freely-trained CNN
architectures. Therefore, Theorem 2.9 cannot be applied as is. Instead, the first convolution
layer contains real-valued kernels, and is generally followed by ReLU and max pooling. As
shown in section 5, this process can be described with RMax operators, such as defined in
(1.1).

As explained in subsection 1.1, an important number of trained convolution kernels ex-
hibit oscillating patterns with well-defined frequencies and orientations. To elaborate, let
V ∈ l2R(Z2) denote such a trained kernel, and consider W ∈ l2C(Z2) as the complex-valued
companion of V satisfying (2.6). Then, W has its energy concentrated in a small region of the
Fourier domain. We thus emit the hypotheses that W ∈ J

(
θ, κ

)
(2.5) for a certain value of

θ ∈ [−π, π]2 and κ ∈ ]0, 2π]. For the sake of conciseness, from now on we write Umax
m, q instead

of Umax
m, q [W], when no ambiguity is possible. In what follows, we establish conditions on W

under which CMod (1.5) and RMax (1.1) operators produce comparable outputs. The final
goal, achieved in section 4, is to provide a shift invariance bound for RMax.

To give an intuition about why RMax may act as a proxy for CMod, we place ourselves
in the continuous framework. Consider the real-valued wavelet transform output ReF1 :=
F ∗ReΨ , employed in RMax, as the real part of the complex-valued wavelet transform output
F1 := F ∗Ψ , used in CMod. At a given location x ∈ R2, the corresponding imaginary part may
carry a large amount of information, which somehow needs to be retrieved. The key idea is
that, if Ψ is sufficiently localized in the Fourier domain, then only the phase of F1 significantly
varies in the vicinity of x, whereas its magnitude remains nearly constant. Therefore, finding
the maximum value of ReF1 within a local neighborhood around x is nearly equivalent to
shifting the phase of F1(x) towards 0. The resulting value then approximates |F1(x)|. To put
it differently, max pooling pushes energy towards lower frequencies, in a similar way as the
modulus does for complex-valued transforms [9]. This result is hinted in subsection 3.1.
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Regretfully, things do not work so smoothly in the discrete case. At first glance, this
is surprising because Shannon’s sampling theorem allows to cast discrete problems into the
continuous framework, as done in subsection 2.4. However, as explained in subsection 3.2, max
pooling operates over a discrete grid instead of a continuous window. Consequently, in some
situations, the maximum value may fall far away from any zero-phase coefficient. Taking into
account this behavior, we adopt a probabilistic point of view, as detailed in subsection 3.4.
Then, we provide in subsection 3.5 an upper bound for the expected gap between CMod and
RMax outputs.

3.1. Continuous Framework. This section, inspired from Waldspurger [50, pp. 190–191],
provides an intuition about resemblance between RMax and CMod in the continuous frame-
work. As will be highlighted in subsection 3.2, adaptation to discrete 2D sequences is not
straightforward and will require a probabilistic approach.

We consider an input function F ∈ L2
R(R2) and a band-pass filter Ψ ∈ V

(
ν, ε

)
. Let us

also consider

(3.1) G : (x, h) 7→ cos
(
⟨ν, h⟩ −H(x)

)
,

where H : R2 → [0, 2π[ denotes the phase of F ∗ Ψ . Lemma 2.2 introduced low-frequency
functions F0, with slow variations. In a nutshell, since suppF0 ⊂ B∞(ε/2), we can write

(3.2) ∥h∥2 ≪ λF0 =⇒ F0(x+ h) ≈ F0(x),

where we have defined λF0 := 2π/ε. Therefore, according to Proposition 3.1 below, we get
the following approximation of F ∗ ReΨ in a neighborhood around any point x ∈ R2:

(3.3) ∥h∥2 ≪ λF0 =⇒ (F ∗ ReΨ)(x+ h) ≈
∣∣(F ∗ Ψ)(x)∣∣G(x,h).

Proposition 3.1. For any h ∈ R2,

(3.4)
∣∣(F ∗ ReΨ)(x+ h)−

∣∣(F ∗ Ψ)(x)∣∣G(x,h)∣∣ ≤ ∣∣F0(x+ h)− F0(x)
∣∣.

Proof. Let us write:

(F ∗ ReΨ)(x+ h)−
∣∣(F ∗ Ψ)(x)∣∣G(x,h)

= Re
(
(F ∗ Ψ)(x+ h)

)
−
∣∣(F ∗ Ψ)(x)∣∣ Re(e−i⟨ν,h⟩ eH(x)

)
= Re

(
(F ∗ Ψ)(x+ h)

)
− Re

(∣∣(F ∗ Ψ)(x)∣∣ eH(x) e−i⟨ν,h⟩
)

= Re
(
(F ∗ Ψ)(x+ h)

)
− Re

(
(F ∗ Ψ)(x) e−i⟨ν,h⟩

)
= Re

(
(F ∗ Ψ)(x+ h)− (F ∗ Ψ)(x) e−i⟨ν,h⟩

)
.

Therefore,∣∣∣(F ∗ ReΨ)(x+ h)−
∣∣(F ∗ Ψ)(x)∣∣G(x,h)∣∣∣ ≤ ∣∣∣(F ∗ Ψ)(x+ h)− (F ∗ Ψ)(x) e−i⟨ν,h⟩

∣∣∣
=
∣∣∣F0(x+ h) e−i⟨ν,x+h⟩ − F0(x) e

−i⟨ν,x+h⟩
∣∣∣ ,

which yields (3.4) and concludes the proof.
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On the one hand, we consider a continuous equivalent of the CMod operator Umod
m [W] as

introduced in (1.5). Such an operator, denoted by Umod[Ψ ], is defined, for any F ∈ L2
R(R2),

by

(3.5) Umod[Ψ ] (F ) : x 7→
∣∣(F ∗ Ψ)(x)∣∣ .

On the other hand, we consider the continuous counterpart of RMax as introduced in (1.1). It
is defined as the maximum value of F ∗ReΨ over a sliding spatial window of size r > 0. This
is possible because F and ReΨ both belong to L2

R(R2), and therefore F ∗ReΨ is continuous.
Such an operator, denoted by Umax

r [Ψ ], is defined, for any F ∈ L2
R(R2), by

(3.6) Umax
r [Ψ ] (F ) : x 7→ max

∥h∥∞≤r
(F ∗ ReΨ)(x+ h).

For the sake of conciseness, the parameter between square brackets is ignored from now on.
If r ≪ λF0 , then (3.3) is valid for any h ∈ B∞(r). Then, using (3.5) and (3.6), we get

(3.7) r ≪ λF0 =⇒ Umax
r F (x) ≈ UmodF (x) max

∥h∥∞≤r
G(x,h).

Using the periodicity of G, we can show that, if r ≥ π
∥ν∥2

, then h 7→ G(x,h) necessarily

reaches its maximum value (i.e., 1) on B∞(r). We therefore get

(3.8)
π

∥ν∥2
≤ r ≪ 2π

ε
=⇒ Umax

r F (x) ≈ UmodF (x).

3.2. Adaptation to Discrete 2D Sequences. As in subsection 2.4, we consider an input
image X ∈ l2R(Z2), a complex, analytic convolution kernel W ∈ J

(
θ, κ

)
, a subsampling factor

m ∈ N \ {0} and an integer q ∈ N \ {0}, referred to as a half-size, such that max pooling
operates on a grid of size (2q + 1)× (2q + 1). We seek a relationship between

(3.9) Ymax := Umax
m, q [W] (X) and Ymod := Umod

m [W] (X),

where Umax
m, q [W] (RMax) and Umod

m [W] (CMod) have been respectively defined in (1.1) and
(1.5). As before, in what follows we omit the parameter between square brackets.

We now use the sampling results from Proposition 2.5. Let FX and ΨW ∈ V(s) denote the
functions satisfying (2.23). Recall that the continuous versions of CMod and RMax operators
have been defined in (3.5) and (3.6), respectively. On the one hand, we apply (2.26) with
m← 2m to Ymod. For any n ∈ Z2,

Umod
m X[n] = (FX ∗ ΨW)(xn)(3.10)

= UmodFX(xn),(3.11)

with xn := 2msn. On the other hand, we postulate that

(3.12) Umax
m, q X[n] = Umax

r FX(xn)



ON THE SHIFT INVARIANCE OF MAX POOLING FEATURE MAPS IN CNNS 19

for a certain value of r ∈ R>0. Then, (3.8) implies Ymod ≈ Ymax. However, as explained
hereafter, (3.12) is not satisfied, due to the discrete nature of the max pooling grid. According
to (1.1) and (1.4), we have

(3.13) Umax
m, q X[n] = max

∥p∥∞≤q
Re
((
X ∗W

)
↓ m

)
[2n+ p].

Therefore, according to (2.26) in Proposition 2.5, we get

Umax
m, q X[n] = max

∥p∥∞≤q
(FX ∗ ReΨW) (xn + hp) ,(3.14)

with

(3.15) xn := 2msn and hp := msp.

By considering rq := ms
(
q + 1

2

)
, we get a variant of (3.12) in which the maximum is evaluated

on a discrete grid of (2q + 1)2 elements, instead of the continuous region B∞(rq), as defined
in (3.6) with r ← rq. As a consequence, (3.7) is replaced in the discrete framework by

(3.16) q ≪ 2π/(mκ) =⇒ Umax
m, q X[n] ≈ Umod

m X[n] max
∥p∥∞≤q

GX

(
xn, hp

)
,

where we have introduced, similarly to (3.1),

(3.17) GX : (x, h) 7→ cos
(
⟨ν, h⟩ −HX(x)

)
,

with

(3.18) ν := θ/s and HX := ∠
(
FX ∗ ΨW

)
,

where ∠ : C → [0, 2π[ denotes the phase operator. Unlike the continuous case, even if the
window size rq is large enough, the existence of p ∈ {−q . . q}2 such that GX

(
xn, hp

)
= 1 is

not guaranteed, as illustrated in Figure 3 with q = 1. Instead, we can only seek a probabilistic
estimation of the normalized mean squared error between Ymax and Ymod.

Approximation (3.16) implies

(3.19) q ≪ 2π/(mκ) =⇒
∥∥Umod

m X− Umax
m, q X

∥∥
2
≈ ∥δm, qX∥2 ,

where δm, qX ∈ l2R(Z2) is defined such that, for any n ∈ Z2,

(3.20) δm, qX[n] := Umod
m X[n]

(
1− max

∥p∥∞≤q
GX

(
xn, hp

))
.

Expression (3.19) suggests that the difference between the left and right terms can be bounded
by a quantity which only depends on the product mκ (subsampling factor × frequency lo-
calization) and the grid half-size q. In what follows, we establish a bound characterizing this
approximation, which will be provided in Proposition 3.5.
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For the sake of conciseness, we introduce the following notations:

AX : (x, h) 7→ (FX ∗ ReΨW)(x+ h);(3.21)

ÃX : (x, h) 7→
∣∣(FX ∗ ΨW)(x)

∣∣GX(x,h).(3.22)

We now consider, for any n ∈ Z2, the vectors hmax
n and h′max

n ∈ ms {−q . . q}2 achieving the
maximum value of AX(xn, hp) and ÃX(xn, hp) over the max pooling grid, respectively. They
satisfy

Amax
X (xn) := AX

(
xn, h

max
n

)
= max

∥p∥∞≤q
AX(xn, hp);(3.23)

Ãmax
X (xn) := ÃX

(
xn, h

′max
n

)
= max

∥p∥∞≤q
ÃX(xn, hp).(3.24)

Then, according to (3.10) and (3.14), we get, for any n ∈ Z2,

Amax
X (xn) = Umax

m, q X[n];(3.25)

Ãmax
X (xn) = Umod

m X[n] max
∥p∥∞≤q

GX

(
xn, hp

)
,(3.26)

and (3.16) becomes

(3.27) q ≪ 2π/(mκ) =⇒ Amax
X (xn) ≈ Ãmax

X (xn).

Remark 3.2. Expression (3.3) implies that, if q ≪ 2π/(mκ), then AX(xn, hp) ≈ ÃX(xn,

hp) for all p ∈ {−q . . q}2. However, this property does not guarantee that AX and ÃX reach
their maximum in the same exact location; i.e., that hmax

n = h′max
n .

The following lemma provides a bound for approximation (3.27).

Lemma 3.3. For any x ∈ R2,

(3.28)
∣∣∣Amax

X (xn)− Ãmax
X (xn)

∣∣∣ ≤ max
h∈{hmax

n ,h′max
n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣.

Proof. We apply Proposition 3.1 with h← hmax
n and h← h′max

n , respectively:

Amax
X (xn) ≤ ÃX

(
xn, h

max
n

)
+
∣∣F0

(
xn + hmax

n

)
− F0(xn)

∣∣ ;(3.29)

Ãmax
X (xn) ≤ AX

(
xn, h

′max
n

)
+
∣∣F0

(
xn + h′max

n

)
− F0(xn)

∣∣ .(3.30)

By construction, we have, for any p ∈ {−q . . q}2,

(3.31) ÃX

(
xn, hp

)
≤ Ãmax

X (xn) and AX

(
xn, hp

)
≤ Amax

X (xn).

Moreover, by definition, there exists p and p′ ∈ {−q . . q}2 such that hmax
n = hp and h′max

n =
hp′ . Therefore, (3.29) and (3.30) yield, respectively,

Amax
X (xn) ≤ Ãmax

X (xn) +
∣∣F0

(
xn + hmax

n

)
− F0(xn)

∣∣ ;(3.32)

Ãmax
X (xn) ≤ Amax

X (xn) +
∣∣F0

(
xn + h′max

n

)
− F0(xn)

∣∣ ,(3.33)

which yields (3.28) and concludes the proof.
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Before stating Proposition 3.5, we consider the following hypothesis:

Hypothesis 3.4. There exists h0 ∈ R2 with ∥h0∥2 =
√
2qms, such that

(3.34)
∑
n∈Z2

max
h∈{hmax

n ,h′max
n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣2 ≤ ∑

n∈Z2

∣∣∣F0(xn + h0)− F0(xn)
∣∣∣2.

The underlying idea is explained as follows. The absolute difference between F0(xn + h)
and F0(xn) is more likely to increase with the norm of h. For any given n ∈ Z2, we have,
by construction, ∥hmax

n ∥2 ≤
√
2qms and

∥∥h′max
n

∥∥
2
≤
√
2qms. Therefore, we can expect to

observe

(3.35) max
h∈{hmax

n ,h′max
n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣2 ≤ ∣∣∣F0(xn + h0)− F0(xn)

∣∣∣2.
While this might occasionally not be true, Hypothesis 3.4 postulates that, when summing
over all the datapoints, the inequality holds.

We now formally state the result characterizing approximation (3.19).

Proposition 3.5. We assume that condition (2.53) is satisfied: κ ≤ π/m. Then, under
Hypothesis 3.4,

(3.36)
∥∥Umod

m X− Umax
m, q X

∥∥
2
≤
∥∥δm, qX

∥∥
2
+ βq(mκ)

∥∥Umod
m X

∥∥
2
,

where βq : R+ → R+ is defined by

(3.37) βq : κ
′ 7→ qκ′.

Proof. Let us write:∥∥Umod
m X− Umax

m, q X
∥∥2
2
=
∑
n∈Z2

(
Umod
m X[n]− Umax

m, q X[n]
)2

=
∑
n∈Z2

(
Umod
m X[n]− Umod

m X[n] max
∥p∥∞≤q

GX

(
xn, hp

)
+Umod

m X[n] max
∥p∥∞≤q

GX

(
xn, hp

)
− Umax

m, q X[n]

)2

=
∑
n∈Z2

(
δm, qX[n] + Ãmax

X (xn)−Amax
X (xn)

)2
,

according to (3.20), (3.25) and (3.26). Then, using the triangle inequality, we get

(3.38)
∥∥Umod

m X− Umax
m, q X

∥∥
2
≤
∥∥δm, qX

∥∥
2
+

∑
n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)21/2

.
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Furthermore, Lemma 3.3 yields∑
n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)2
≤
∑
n∈Z2

max
h∈{hmax

n ,h′max
n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣2(3.39)

≤
∑
n∈Z2

∣∣∣F0(xn + h0)− F0(xn)
∣∣∣2,(3.40)

according to Hypothesis 3.4. Now, since (2.53) is satisfied, we can use Lemma 2.8 (2.44) with
h← h0. We get∑

n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)2
≤ 1

4m2s2
∥Th0F0 − F0∥2L2

≤ α(κh0/s)
2 1

4m2s2
∥F0∥2L2 (acc. to Proposition 2.3)

= α(κh0/s)
2
∥∥Umod

m X
∥∥2
2
. (acc. to Lemma 2.8 (2.45))

Since, according to Hypothesis 3.4, ∥h0∥2 =
√
2qms, it comes that ∥h0∥1 = 2qms. Therefore,

(3.41) α(κh0/s)
2 =

κ2 ∥h0∥21
4s2

= (qmκ)2,

which yields

(3.42)
∑
n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)2
≤ βq(mκ)2

∥∥Umod
m X

∥∥2
2
.

Finally, plugging (3.42) into (3.38) concludes the proof.

We now seek a probabilistic estimation of
∥∥δm, qX

∥∥
2
. For this purpose, we first reformulate

the problem using the unit circle S1 ⊂ C, before introducing a probabilistic framework in
subsection 3.4.

3.3. Notations on the Unit Circle. In what follows, for any z ∈ C \ {0}, we denote by
∠z ∈ [0, 2π[ the argument of z. For any z, z′ ∈ S1, the angle between z and z′ is given
by ∠(z∗z′). We then denote by [z, z′]S1 ⊂ S1 the arc on the unit circle going from z to z′

counterclockwise:

(3.43)
[
z, z′

]
S1 :=

{
z′′ ∈ S1

∣∣ ∠(z∗z′′) ≤ ∠(z∗z′)
}
.

We remind readers that xn and hp ∈ R2 have been defined in (3.15). By using the relation
cosα = Re(eiα), (3.17) becomes, for any n ∈ Z2 and any p ∈ {−q . . q}2,

(3.44) GX

(
xn, hp

)
= Re

(
Z∗
X(xn)Zp(mθ)

)
,

where we have defined the following functions with outputs on the unit circle:

(3.45) ZX : x 7→ eiHX(x) and Zp : ω 7→= ei⟨ω,p⟩,
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Figure 3. Search for the maximum value of h 7→ GX(x, h) over a discrete grid of size 3× 3, i.e., q = 1.
This figure displays 3 examples with different frequencies ν := θ/s and phases HX(x). Hopefully the
result will be close to the true maximum (left), but there are some pathological cases in which all
points in the grid fall into pits (middle and right).

where HX denotes the phase of FX ∗ ΨW as introduced in (3.18). On the one hand, ZX(xn)
is the phase (represented on the unit circle S1) of the complex wavelet transform FX ∗ ΨW

at location xn. On the other hand, Zp(mθ) approximates the phase shift between any two
evaluations of FX ∗ ΨW at locations x, x′ such that x′ −x = hp. This however is only true if
we assume that ΨW exhibits slow amplitude variations. Then, GX

(
xn, hp

)
approximates the

cosine of the phase of FX ∗ ΨW at location xn + hp.
According to (3.16), max∥p∥∞≤q GX

(
xn, hp

)
approximates the ratio between RMax and

CMod outputs at discrete location n ∈ Z2. The intuition behind this is that max pooling seeks
a point in a discrete grid around xn where the phase of FX ∗ ΨW is the closest to 1, thereby
maximizing the amount of energy on the real part of the signal. Assuming slow amplitude
variations of ΨW, the result therefore approximates the modulus of the complex coefficients.

To get an estimation of δm, qX[n] (3.20), we will exploit the following property. If the
phases Zp(mθ) for p ∈ {−q . . q}2 are well distributed on the unit circle, then the values of
GX

(
xn, hp

)
are evenly spread out on [−1, 1]. Therefore, its maximum value is more likely to

be close to 1, and (3.20) becomes

(3.46) δm, qX[n]≪ Umod
m X[n] ∀n ∈ Z2.

Let nq := (2q+ 1)2 denote the number of evaluation points for the max pooling operator.

For any ω ∈ R2, we consider a sequence of values on S1, denoted by
(
Z

(q)
i (ω)

)
i∈{0..nq−1},

obtained by sorting {Zp(ω)}p∈{−q..q}2 (3.45) in ascending order of their arguments:

(3.47) 0 = H
(q)
0 (ω) ≤ · · · ≤ H(q)

nq−1(ω) < 2π,

where H
(q)
i (ω) denotes the phase of Z

(q)
i (ω). Besides, we close the loop with H

(q)
nq (ω) := 2π
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and Z
(q)
nq (ω) := 1. Then, we split S1 into nq arcs delimited by Z

(q)
i (ω):

(3.48) A
(q)
i (ω) :=


[
Z

(q)
i (ω), Z

(q)
i+1(ω)

]
S1

if H
(q)
i+1(ω)−H(q)

i (ω) < 2π;

S1 otherwise.

Finally, for any i ∈ {0 . . nq − 1}, we denote by

(3.49) δH
(q)
i : ω 7→ H

(q)
i+1(ω)−H(q)

i (ω)

the function computing the angular measure of arc A
(q)
i (ω), for any ω ∈ R2.

3.4. Probabilistic Framework. From now on, input X is considered as discrete 2D sto-
chastic processes. In order to “randomize” FX introduced in (2.23), we define a continuous
stochastic process from X, denoted by FX, such that

(3.50) ∀x ∈ R2, FX(x) :=
∑
n∈Z2

X[n]Φ
(s)
n (x).

Now, we consider the following stochastic processes, which are parameterized by X:

(3.51) MX := |FX ∗ ΨW|; HX := ∠(FX ∗ ΨW); ZX := eiHX ,

and, for any p ∈ {−q . . q}2,

GX,p := Re
(
Z∗
X Zp(mθ)

)
; Gmax

X := max
∥p∥∞≤q

GX,p,(3.52)

where the deterministic function Zp has been defined in (3.45).

Remark 3.6. HX(x) is ill-defined if MX(x) = 0. To overcome this, it is designed to follow a
uniform conditional probability distribution on [0, 2π[, givenMX(x) = 0. Moreover, we impose
the following conditional independence, for any n ∈ N \ {0} and x, y0, . . . , yn−1 ∈ R2:

(3.53) HX(x) ⊥⊥M
∣∣ MX(x) = 0, with M :=

(
MX(y0), · · · , MX(yn−1)

)⊤
.

Finally, we impose the following relationship between HTuX and HX, for any u ∈ R2:

(3.54) MTuX(x) = 0 =⇒ HTuX(x) = TsuHX(x).

For any x ∈ R2, FX(x) (2.23) and HX(x) (3.18) are respectively drawn from FX(x) and
HX(x). Then, ZX(x) (3.45) is a realization of ZX(x). Consequently, according to (3.44),
GX

(
x, hp

)
is a realization of GX,p(x). Besides, according to the definition of CMod in (1.5)

and xn in (3.15), Proposition 2.5 with m← 2m implies that

(3.55) MX(xn) = Umod
m X[n].
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We remind that θ ∈ [−π, π]2 and κ ∈ ]0, 2π] respectively denote the center and size of the
Fourier support of the complex kernel W ∈ J

(
θ, κ

)
. To compute the expected discrepancy

between Ymax and Ymod, we assume that

∥θ∥2 ≫ 2π/N ;(3.56)

∥θ∥2 ≫ κ,(3.57)

where N ∈ N \ {0} denotes the support size of input images. These assumptions exclude
low-frequency filters from the scope of our study. We then state the following hypotheses, for
which a justification is provided in Appendix A.

Hypothesis 3.7. For any x ∈ R2, ZX(x) is uniformly distributed on S1.

Hypothesis 3.8. For any n ∈ N \ {0} and x, y0, . . . , yn−1 ∈ R2, the random variables
MX(yi) for i ∈ {0 . . n− 1} are jointly independent of ZX(x).

3.5. Expected Quadratic Error between RMax and CMod. In this section, we propose
to estimate the expected value of the stochastic quadratic error P̃2

X, defined such that

(3.58) P̃X :=
∥∥Umod

m X− Umax
m, q X

∥∥
2
/
∥∥Umod

m X
∥∥
2
.

According to (3.9), this is an estimation of the relative error between Ymod and Ymax.
First, let us reformulate δm, qX, introduced in (3.20), using the probabilistic framework.

According to (3.44) and (3.52), we have, for any n ∈ Z2,

(3.59) δm, qX[n] := Umod
m X[n]

(
1− Gmax

X (xn)
)
.

We now consider the stochastic process

(3.60) QX := 1− Gmax
X ,

and the random variable

(3.61) Q̃X := ∥δm, qX∥2 /
∥∥Umod

m X
∥∥
2
.

The next steps are as follows: (1) at the pixel level, show that E[QX(x)
2] depends on the

subsampling factor m and the filter frequency θ, and remains close to zero with some ex-
ceptions; (2) at the image level, show that the expected value of Q̃2

X is equal to the latter

quantity; (3) use Proposition 3.5, which implies that P̃X ≈ Q̃X, to deduce an upper bound on
the expected value of P̃2

X.
The first point is established in Proposition 3.9 below, and the two remaining ones are the

purpose of Theorem 3.11.

Proposition 3.9. Assuming Hypothesis 3.7, the expected value of QX(x)
2 is independent

from the choice of x ∈ R2, and

(3.62) E
[
QX(x)

2
]
= γq(mθ)2,
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where we have defined

(3.63) γq : ω 7→

√√√√3

2
+

1

4π

nq−1∑
i=0

(
sin δH

(q)
i (ω)− 8 sin

δH
(q)
i (ω)

2

)
,

with δH
(q)
i (ω) ∈ [0, 2π] (3.49) being the length of arc A

(q)
i (ω).

Proof. For the sake of readability, in this proof we omit the argument of functions Zp

(3.45), Z
(q)
i , H

(q)
i (3.47), A

(q)
i (3.48), and δH

(q)
i (3.49); we assume they are evaluated at ω ←

mθ. We consider the “Lebesgue” Borel σ-algebra on S1 generated by
{
[z, z′]S1

∣∣ z, z′ ∈ S1
}
∪

{S1}, on which we have defined the angular measure ϑ such that ϑ(S1) := 2π, and

(3.64) ∀z, z′ ∈ S1, ϑ
([
z, z′

]
S1
)
:= ∠(z∗z′).

For any p ∈ N \ {0}, we compute the p-th moment of Gmax
X (x) defined in (3.52). By

considering

gmax : S1 → [−1, 1]
z 7→ max

∥p∥∞≤q
Re
(
z∗Zp

)
,(3.65)

we get Gmax
X (x) = gmax(ZX(x)). A visual representation of gmax is provided in Figure 4, for

two different values of θ. According to Hypothesis 3.7, ZX(x) follows a uniform distribution
on S1. Therefore,

(3.66) E [Gmax
X (x)p] =

1

2π

∫
S1
gmax(z)

p dϑ(z),

which proves that E [Gmax
X (x)p] does not depend on x. Let us split the unit circle S1 into the

arcs A
(q)
0 , . . . , A

(q)
nq−1 such as introduced in (3.48):

(3.67) E [Gmax
X (x)p] =

1

2π

nq−1∑
i=0

∫
A
(q)
i

gmax(z)
p dϑ(z).

Let i ∈ {0 . . nq − 1}. We show that

(3.68) ∀z ∈ A
(q)
i , gmax(z) = max

(
Re
(
z∗Z

(q)
i

)
, Re

(
z∗Z

(q)
i+1

))
.

Let z ∈ A
(q)
i and i′ /∈ {i, i+ 1}. We prove that

(3.69) Re
(
z∗Z

(q)
i′
)
≤ Re

(
z∗Z

(q)
i

)
or Re

(
z∗Z

(q)
i′
)
≤ Re

(
z∗Z

(q)
i+1

)
.

On the one hand, we assume that ∠
(
z∗Z

(q)
i′
)
≤ π. By design of

(
Z

(q)
i

)
i∈{0..nq−1}, we have

(3.70) Z
(q)
i+1 ∈

[
z, Z

(q)
i′
]
S1 .
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(a) General case (b) Pathological case

Figure 4. Top: 2D representation of h 7→ GX(xn, h) (3.17), for two different values of θ ∈ R2, q = 1
and arbitrary values ofm ∈ N\{0} and s ∈ R\{0}. Assuming the plots are centered around h = 0, each

point materializes a location hp in the max pooling grid, for p ∈ {−q . . q}2. The desirable situation
occurs when one of these locations falls near a ridge (bright areas), in which case the outputs produced
by RMax and CMod are similar—see (3.16). Each number i ∈ {0 . . 8} represents the rank of Zp ∈ S1
(3.45), when these values are sorted by ascending order of their arguments (3.47). If rank i is affected

to location hp, then we have Zp = Z
(q)
i . Bottom: polar representations of gmax : S1 → [−1, 1] (3.65),

corresponding to the same settings. The closer the curve is from the outer ring, the more likely some
points hp will fall near a ridge of GX. (a) Case where the values Zp are roughly evenly distributed
on S1. (b) Case where these values are concentrated in a small portion of the unit circle. The most
extreme cases occurs when Zp = 1 for any p. Figure 3 (middle and right) depicts two such situations.

Therefore, by definition of arcs on the unit circle (3.43), we get

(3.71) ∠
(
z∗Z

(q)
i+1

)
≤ ∠

(
z∗Z

(q)
i′
)
.

Then, since cos is non-increasing on [0, π], we get

(3.72) cos∠
(
z∗Z

(q)
i+1

)
≥ cos∠

(
z∗Z

(q)
i′
)
,
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which yields the right part of (3.69). On the other hand, if ∠
(
z∗Z

(q)
i′
)
≥ π, a similar reasoning

yields the left part of (3.69). Then, (3.68) holds.
Now, we show that, as observed in Figure 4, gmax is piecewise-symmetric with respect to

the center value of each arc A
(q)
i , denoted by

(3.73) Z
(q)
i :=

√
Z

(q)
i Z

(q)
i+1.

Let z1, z2 ∈ A
(q)
i which are symmetric with respect to Z

(q)
i . Therefore, there exists z′ ∈ S1

such that z1 = Z
(q)
i z′ and z2 = Z

(q)
i z′∗. We now prove that

(3.74) gmax(z1) = gmax(z2).

A simple calculation yields

(3.75) z∗1Z
(q)
i+1 = z′

∗
Z̃

(q)
i and z∗2Z

(q)
i =

(
z′

∗
Z̃

(q)
i

)∗
,

with

(3.76) Z̃
(q)
i :=

(
Z

(q)
i

∗
Z

(q)
i

)
=
(
Z

(q)
i

∗
Z

(q)
i+1

)
.

Therefore,

(3.77) Re
(
z∗1Z

(q)
i+1

)
= Re

(
z∗2Z

(q)
i

)
.

Since z1, z2 both belong to A
(q)
i , gmax(z1) and gmax(z2) satisfy (3.68). Then, by symmetry,

(3.77) implies (3.74). One can observe from Figure 4 that gmax reaches its local minimum at

the center of arc A
(q)
i , i.e., Z

(q)
i . This corresponds to a point where gmax is non-differentiable.

We denote by A
(q)
i :=

[
Z

(q)
i , Z

(q)
i

]
S1 the first half of arc A

(q)
i . Then,

(3.78) ∀z ∈ A
(q)
i , gmax(z) = Re

(
z∗Z

(q)
i

)
.

As a consequence, using symmetry, we get∫
A
(q)
i

gmax(z)
p dϑ(z) = 2

∫
A
(q)
i

gmax(z)
p dϑ(z)

= 2

∫
A
(q)
i

Re
(
z∗Z

(q)
i

)p
dϑ(z).

By using the change of variable formula [1, p. 81] with z ← eiη, we get

(3.79)

∫
A
(q)
i

gmax(z)
p dϑ(z) = 2

∫ H
(q)
i

H
(q)
i

cosp
(
η −H(q)

i

)
dη,
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where H
(q)
i :=

(
H

(q)
i +H

(q)
i+1

)
/2 denotes the argument of Z

(q)
i . Then, the change of variable

η′ ← η −H(q)
i yields

(3.80)

∫
A
(q)
i

gmax(z)
p dϑ(z) = 2

∫ δH
(q)
i /2

0
cosp η′ dη′.

Now, we insert (3.80) into (3.67), and compute E [Gmax
X (x)p] for p← 1 and p← 2:

E [Gmax
X (x)] =

1

π

nq−1∑
i=0

sin
δH

(q)
i

2
;

E
[
Gmax
X (x)2

]
=

1

2
+

1

4π

nq−1∑
i=0

sin δH
(q)
i .

We recall that QX := 1− Gmax
X . By linearity of E, we get

(3.81) E
[
QX(x)

2
]
:=

3

2
+

1

4π

nq−1∑
i=0

(
sin δH

(q)
i − 8 sin

δH
(q)
i

2

)
,

which concludes the proof.

We consider an ideal scenario where
(
Z

(q)
i (mθ)

)
i∈{0..nq−1} are evenly spaced on S1. Then,

an order 2 Taylor expansion yields

(3.82) γq(mθ) = o(1/q2),

providing an order-two-polynomial decay rate for QX(x), when the grid half-size q increases.
Figure 5 displays θ 7→ γq(mθ)2 for θ ∈ [−π, π]2, with m = 4 and q = 1 as in AlexNet. We
notice that, for the major part of the Fourier domain, γq remains close to 0. However, we
observe a regular pattern of dark regions, which correspond to pathological frequencies where

the repartition of
(
Z

(q)
i (mθ)

)
i∈{0..nq−1} is unbalanced.

So far, we established a result at the pixel level. Before stating Theorem 3.11, which
extends the result to the image level, we need the following intermediate statement.

Proposition 3.10. We consider the random variable

(3.83) S̃X :=
∥∥Umod

m X
∥∥
2
.

Under Hypothesis 3.8, for any x ∈ R2,
• ZX(x) is independent of S̃X;
• ZX(x), MX(x) are conditionally independent given S̃X.

Proof. We suppose that Hypothesis 3.8 is satisfied and we consider x ∈ R2. For a given
n ∈ N \ {0}, we introduce the random variable

(3.84) S̃X, n :=

√ ∑
∥p∥∞≤n

MX(xp)2.
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Figure 5. γ(mθ)2 as a function of the kernel characteristic frequency θ ∈ [−π, π]2. According to
Theorem 3.11, this quantity provides an approximate bound for the expected quadratic error between
RMax and CMod outputs. The subsampling factor m has been set to 2 as in ResNet (left), and 4 as in
AlexNet (right). The bright regions correspond to frequencies for which the two outputs are expected
to be similar. However, in the dark regions, pathological cases such as illustrated in Figure 3 are more
likely to occur.

According to Hypothesis 3.8, ZX(x) is jointly independent of MX(xp) for p ∈ {−n . . n}2.
Therefore, by composition, ZX(x) is also independent of S̃X, n. Moreover, according to (3.55)

and (3.83), S̃X, n converges almost surely towards S̃X, which proves independence between

ZX(x) and S̃X.
Now, we prove conditional independence between ZX(x) and MX(x) given S̃X. According

to Hypothesis 3.8,

(3.85)
(
MX(x), S̃X, n

)
⊥⊥ ZX(x),

where ⊥⊥ stands for independence. This is because S̃X, n only depends on a finite number of
MX(xp). Therefore,

(3.86) ZX(x) ⊥⊥ MX(x)
∣∣ S̃X, n.

Finally, since S̃X, n converges almost surely towards S̃X, it comes that ZX(x) and MX(x) are

conditionally independent given S̃X.

Finally, Propositions 3.9 and 3.10 yield the following theorem. It provides an upper bound
on the expected value of the normalized mean squared error P̃2

X, such as defined in (3.58).

Theorem 3.11 (MSE between CMod and RMax). Let W ∈ J
(
θ, κ

)
denote a discrete

Gabor-like filter, m ∈ N \ {0} a subsampling factor and q ∈ N \ {0} a grid half-size. We
consider a stochastic process X whose realizations are elements of l2R(Z2). We assume that
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condition (2.53) is satisfied: κ ≤ π/m. Then, under Hypotheses 3.4, 3.7, and 3.8,2

(3.87) E
[
P̃2
X

]
≤
(
βq(mκ) + γq(mθ)

)2
,

where P̃2
X (3.58) denotes the stochastic quadratic error between CMod and RMax outputs. We

remind that βq and γq have been introduced in (3.37) and (3.63), respectively.

Proof. We consider n ∈ Z2. By construction, QX(xn) := 1 − Gmax
X (xn) only depends on

ZX(xn). Therefore, under Hypothesis 3.8, Proposition 3.10 implies

(3.88) QX(xn) ⊥⊥ MX(xn)
∣∣ S̃2X and QX(xn) ⊥⊥ S̃2X.

Besides, we introduce

(3.89) ∆̃X := ∥δm, qX∥2 ,

where δm, qX is defined in (3.59). Then, using the linearity of E, we get

E
[
∆̃2

X

∣∣∣ S̃2X = σ
]
=
∑
n∈Z2

E
[
δm, q[n]

2
∣∣∣ S̃2X = σ

]
=
∑
n∈Z2

E
[
Umod
m, l X[n]

2
(
1− Gmax

X (xn)
)2 ∣∣∣ S̃2X = σ

]
=
∑
n∈Z2

E
[
MX(xn)

2QX(xn)
2
∣∣∣ S̃2X = σ

]
(acc. to (3.55) and (3.60))

=
∑
n∈Z2

E
[
MX(xn)

2
∣∣∣ S̃2X = σ

]
E
[
QX(xn)

2
]

(acc. to (3.88)).

According to (3.55) and (3.83), we have

(3.90)
∑
n∈Z2

MX(xn)
2 =

∥∥Umod
m X

∥∥2
2
= S̃2X.

Therefore, using again the linearity of E, we get

E
[
∆̃2

X

∣∣∣ S̃2X = σ
]
= E

[
S̃2X

∣∣∣ S̃2X = σ
]
E
[
QX(xn)

2
]

= σ · E
[
QX(xn)

2
]
.

Under Hypothesis 3.7, Proposition 3.9 yields

(3.91) E
[
∆̃2

X

∣∣∣ S̃2X = σ
]
= σ · γq(mθ)2.

Besides, we can reformulate Q̃X such as defined in (3.61): Q̃X = ∆̃X/S̃X. Therefore,

(3.92) E
[
Q̃2

X

∣∣∣ S̃2X = σ
]
=

1

σ
E
[
∆̃2

X

∣∣∣ S̃2X = σ
]
= γq(mθ)2.

2We can easily prove that these properties are independent from the choice of sampling interval s > 0.
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According to (3.92), the conditional expected value of Q̃2
X remains the same whatever the

outcome of S̃2X. Thus, the law of total expectation states that

(3.93) E
[
Q̃2

X

]
= E

[
E
[
Q̃2

X

∣∣ S̃2X]] = γq(mθ)2.

Since we have assumed Hypothesis 3.4, we can apply Proposition 3.5. Using the definition
of P̃X (3.58) and Q̃X (3.61), we get

(3.94) P̃X ≤ Q̃X + βq(mκ).

Then,

(3.95) E
[
P̃2
X

]
≤ E

[
Q̃2

X

]
+ 2βq(mκ)E

[
Q̃X

]
+ βq(mκ)

2.

According to Jensen’s inequality,

(3.96) E
[
Q̃X

]
≤
√
E
[
Q̃2

X

]
= γq(mθ).

Thus,

(3.97) E
[
P̃2
X

]
≤ γq(mθ)2 + 2βq(mκ)γq(mθ) + βq(mκ)

2,

which yields (3.87).

Let us analyze the bound obtained in (3.87). The first term, βq(mκ), accounts for the
localized property of the convolution filter W. This term decreases linearly with the product
mκ. In the limit case where κ = 0 (infinite, nonlocal filter), we get βq(mκ) = 0. Note that
a smaller subsampling factor m allows for a larger bandwidth κ. Besides, βq(mκ) increases
linearly with the size of the max pooling grid, which is characterized by q. The second term,
γq(mθ), accounts for the discrete nature of the max pooling grid. It strongly depends on
the characteristic frequency θ, as illustrated in Figure 5. According to (3.82), this term has
a polynomial decay when q increases. However, increasing the size of the max pooling grid
also results in increasing the term βq(mκ), as explained above. Therefore, a tradeoff must be
found to get an optimal bound.

4. Shift Invariance of RMax Outputs. In this section, we present the main theoretical
claim of this paper. Based on the previous results, we provide a probabilistic measure of shift
invariance for RMax operators. First, we consider the following lemma.

Lemma 4.1. If Hypotheses 3.7 and 3.8 are satisfied, then they are also true with X← TuX,
for any u ∈ R2.

Proof. First, we show that, for any x ∈ R2,

MTuX(x) = TsuMX(x);(4.1)

ZTuX(x) = TsuZX(x).(4.2)
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According to Lemma 2.6, and since the convolution product commutes with translations, we
have

(4.3)
(
FTuX ∗ ΨW

)
(x) = Tsu

(
FX ∗ ΨW

)
(x).

Then, using (3.51), the above expression becomes

(4.4) MTuX(x)× ZTuX(x) = (TsuMX)(x)× (TsuZX)(x).

Therefore, we necessarily have (4.1). On the one hand, if MTuX(x) > 0, then (4.2) is satisfied,
by uniqueness of the magnitude-phase decomposition. On the other hand, if MTuX(x) = 0,
then (3.54) also guarantees (4.2), by design.

Finally, we remind that

(4.5) TsuMX(x) = MX(x− su) and TsuZX(x) = ZX(x− su).

Then, considering hypotheses Hypotheses 3.7 and 3.8 with x← x− su yields the result.

We are now ready to state the main result about shift invariance of RMax outputs.

Theorem 4.2 (Shift invariance of RMax). We assume that the requirements stated in The-
orem 3.11 are satisfied. Besides, given a translation vector u ∈ R2, we consider the following
random variable:

(4.6) R̃X,u :=
∥∥Umax

m, q (TuX)− Umax
m, q X

∥∥
2
/
∥∥Umod

m X
∥∥
2
.

Then, under condition (2.53), we have

(4.7) E
[
R̃X,u

]
≤ 2

(
βq(mκ) + γq(mθ)

)
+ α(κu),

where α, βq and γq are defined in (2.14), (3.37) and (3.63), respectively.

Proof. Using the triangle inequality, we compute

(4.8)
∥∥Umax

m, q (TuX)− Umax
m, q X

∥∥
2

≤
∥∥Umod

m (TuX)
∥∥
2
P̃TuX +

∥∥Umod
m X

∥∥
2
P̃X +

∥∥Umod
m (TuX)− Umod

m X
∥∥
2
,

where P̃X and P̃TuX are defined in (3.58). According to (2.53), we can apply Proposition 2.10
on the first term of (4.8):

(4.9)
∥∥Umod

m (TuX)
∥∥
2
=
∥∥Umod

m X
∥∥
2
.

Moreover, we can apply Theorem 2.9 to the third term of (4.8):

(4.10)
∥∥Umod

m (TuX)− Umod
m X

∥∥
2
≤ α(κu)

∥∥Umod
m X

∥∥
2
.

We therefore get

(4.11)
∥∥Umax

m, q (TuX)− Umax
m, q X

∥∥
2
≤
[
P̃TuX + P̃X + α(κu)

] ∥∥Umod
m X

∥∥
2
.
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Then, by linearity of E, we get

(4.12) E
[
R̃X,u

]
≤ E

[
P̃TuX

]
+ E

[
P̃X

]
+ α(κu),

where R̃X,u has been introduced in (4.7).
For any stochastic process X′ satisfying Hypotheses 3.7 and 3.8, Theorem 3.11 and Jensen’s

inequality yield:

(4.13) E
[
P̃X′
]
≤ βq(mκ) + γq(mθ).

According to Lemma 4.1, Hypotheses 3.7 and 3.8 are also satisfied for X ← TuX. Therefore,
(4.13) is valid for both X′ ← X and X′ ← TuX, and plugging it into (4.12) concludes the
proof.

In the bound established in (4.7), the sum βq(mκ) + γq(mθ) accounts for the discrepancy
between RMax and CMod outputs, as stated in Theorem 3.11, whereas the term α(κu)
characterizes the stability of CMod outputs, as stated in Theorem 2.9. If κ is sufficiently
small, then α(κu) and βq(mκ) become negligible with respect to γq(mθ), and the bound can
be approximated by 2 γq(mθ). Theorem 4.2 therefore provides a validity domain for shift
invariance of RMax operators, as illustrated in Figure 5 with q = 1.

Remark 4.3. The stochastic discrepancy introduced in (4.6) is estimated relatively to the
CMod output. This choice is motivated by the perfect shift invariance of its norm, as shown
in Proposition 2.10.

Remark 4.4. In practice, most of the time max pooling is performed on a grid of size 3×3;
therefore q = 1. For the sake of conciseness, we shall sometimes drop q in the notations, which
implicitly means q = 1.

5. Adaptation to Multichannel Convolution Operators. In this section, we adapt Theo-
rems 2.9, 3.11, and 4.2 to multichannel inputs (e.g ., RGB images), employed in conventional
CNNs such as AlexNet or ResNet.

First, we define multichannel RMax and CMod operators relatively to (1.1) and (1.5). We
denote by K and L ∈ N \ {0} the number of input and output channels, respectively. Besides,
we consider a multichannel convolution tensor

(5.1) W := (Wlk)l∈{0..L−1}, k∈{0..K−1} ∈
(
l2C(Z2)

)L×K
.

Multichannel RMax and CMod operators take as input images, denoted by

(5.2) X := (Xk)k∈{0..K−1} ∈
(
l2R(Z2)

)K
.

They are defined, for any given output channel l ∈ {0 . . L− 1}, by

Umax
m, q, l[W] : X 7→ MaxPoolq

(
K−1∑
k=0

(
Xk ∗ ReWlk

)
↓ m

)
;(5.3)

Umod
m, l [W] : X 7→

∣∣∣∣∣
K−1∑
k=0

(Xk ∗Wlk) ↓ (2m)

∣∣∣∣∣ ,(5.4)
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where m, q ∈ N \ {0} respectively denote a subsampling factor and the max pooling grid
half-size. Analogously to (3.9) for single-channel inputs, we now consider

(5.5) Ymax
l := Umax

m, q, l[W] (X) and Ymod
l := Umod

m, l [W] (X).

Again, in what follows we omit the parameter between square brackets. To apply Theo-
rems 2.9, 3.11, and 4.2 to the current setting on the l-th output channel, we need the following
hypotheses.

Hypothesis 5.1 (Monochorome filters). Let

(5.6) W̃l :=
1

K

K−1∑
k=0

Wlk

denote the mean kernel of the l-th output channel. Then, there exists µl ∈ RK such that

(5.7) ∀k ∈ {0 . .K − 1} , Wlk = µlkW̃l.

Hypothesis 5.2 (Gabor-like filters). There exists a bandwidth κ > 0 satisfying κ ≤ π/m
and a frequency vector θl ∈ [−π, π]2 such that

(5.8) W̃l ∈ J
(
θl, κ

)
.

Note that the bandwidth κ is not indexed by l, because it shall later be assumed to be
shared across the output channels. Then, under Hypothesis 5.1, Ymax

l and Ymod
l are the

outputs of single-channel RMax and CMod operators, as introduced in (1.1) and (1.5):

(5.9) Ymax
l = Umax

m, q

[
W̃l

](
Xlum

l

)
and Ymod

l = Umod
m

[
W̃l

](
Xlum

l

)
,

where Xlum
l ∈ l2R(Z2) (“luminance” image) is defined as the following linear combination:

(5.10) Xlum
l :=

K−1∑
k=0

µlkXk.

The results established for single-channel inputs can therefore be extended to multichannel
operators. Specifically, we get the following corollaries to Theorems 2.9, 3.11, and 4.2.

Corollary 5.3 (Shift invariance of CMod). For a given output channel l ∈ {0 . . L− 1},
we postulate Hypotheses 5.1 and 5.2. Then, for any input image X ∈

(
l2R(Z2)

)K
with finite

support and any translation vector u ∈ R2,

(5.11)
∥∥Umod

m, l (TuX)− Umod
m, l X

∥∥
2
≤ α(κu)

∥∥Umod
m, l X

∥∥
2
,

where α has been defined in (2.14).



36 H. LETERME, K. POLISANO, V. PERRIER, AND K. ALAHARI

Corollary 5.4 (MSE between CMod and RMax). As in Corollary 5.3, we postulate Hy-
potheses 5.1 and 5.2. Again, we assume that condition (2.53) is satisfied: κ ≤ π/m. Besides,
we consider X as a stack of K discrete stochastic processes, and assume Hypotheses 3.4, 3.7,
and 3.8 with X← Xlum

l and W← W̃l. Then,

(5.12) E
[
P̃2
X, l

]
≤
(
βq(mκ) + γq(mθl)

)2
,

where we have defined the following random variable:

(5.13) P̃X, l :=
∥∥Umod

m, l X− Umax
m, l X

∥∥
2
/
∥∥Umod

m, l X
∥∥
2
.

Corollary 5.5 (Shift invariance of RMax). We assume that the requirements stated in Corol-
lary 5.4 are satisfied. Then, for any translation vector u ∈ R2,

(5.14) E
[
R̃X,u, l

]
≤ 2

(
βq(mκ) + γq(mθl)

)
+ α(κu),

where we have defined the following random variable:

(5.15) R̃X,u, l :=
∥∥Umax

m, l (TuX)− Umax
m, l X

∥∥
2
/
∥∥Umod

m, l X
∥∥
2
.

Remark 5.6. In the above results, we used a translation operator on multichannel tensors,
obtained by applying Tu, as defined in (2.34), to each channel Xk.

6. A Case Study Implementing the Dual-Tree Complex Wavelet Packet Transform.
In this section, we experimentally validate the results stated in Theorems 2.9, 3.11, and 4.2.
To this end, we consider a fully-deterministic scenario implementing the dual-tree complex
wavelet packet transform (DT-CWPT), which exhibit characteristics akin to those observed in
the initial convolution layer of freely-trained CNNs such as AlexNet or ResNet. In particular,
as stated in subsection 6.1, DT-CWPT achieves subsampled convolutions with oriented band-
pass filters tiling the Fourier domain into overlapping square windows. As such, it provides
a convenient framework to experimentally validate our theoretical findings in a controlled
environment. Then, in subsection 6.2, we build CMod and RMax operators based on DT-
CWPT convolution kernels.

6.1. Main Properties. In what follows, we outline the principal characteristics of DT-
CWPT. A detailed description of the transform itself is provided in Appendix B.1, whereas
the results presented hereafter are formally established in Appendices B.2 and B.3.

For a given decomposition depth J ∈ N\{0}, DT-CWPT achieves subsampled convolutions
with 4 × 4J oriented band-pass filters that tile the Fourier domain into overlapping square
windows of size

(6.1) κJ := π/mJ , with mJ := 2J−1.

More specifically, considering an input image X ∈ l2R(Z2), it produces a set of 4 × 4J output
feature maps

(6.2) D(J) :=
(
D

↗(J)
l , D

↘(J)
l , D

↙(J)
l , D

↖(J)
l

)
l∈{0..4J−1},
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where each arrow points to the Fourier quadrant where the feature map’s energy is con-
centrated. Moreover, as stated in Proposition B.2, for any l ∈

{
0 . . 4J − 1

}
, there exists

W
↗(J)
l ∈ l2C(Z2) such that

(6.3) D
↗(J)
l =

(
X ∗W↗(J)

l

∗)
↓ 2J .

An interesting property is that each kernel W
↗(J)
l approximately satisfies

(6.4) W
↗(J)
l ∈ J

(
θ
(J)
l , κJ

)
for a certain characteristic frequency θ

(J)
l ∈ [0, π]2. In other words, it approximately behaves

as a Gabor-like filter in the discrete framework (2.5). Moreover, each kernel corresponds to
a different frequency, thereby covering the top-right quadrant of the Fourier domain. Similar
results can be established for the other three Fourier quadrants. Graphical representations

of W↗(J) :=
(
W

↗(J)
l

)
l∈{0..4J−1} and W↘(J) :=

(
W

↘(J)
l

)
l∈{0..4J−1} are provided in Figure 6

with J = 2 (Figure 6a, 32 filters) and J = 3 (Figure 6b, 128 filters).
The RMax and CMod operators implemented in our experiments respectively satisfy (1.1)

and (1.5) with with W ← W
↗(J)
l or W

↘(J)
l , and m ← mJ . Note that increasing the decom-

position depth J , and therefore the subsampling factor mJ , results in a decreased Fourier
support size κJ , therefore matching the condition stated in (2.53) κ← κJ and m← mJ .

Remark 6.1. Because X is real-valued, the feature maps D
↙(J)
l and D

↖(J)
l are the respec-

tive complex conjugates of D
↗(J)
l and D

↘(J)
l , and thus do not need to be explicitly computed.

Then, we can easily show that W
↙(J)
l and W

↖(J)
l are also the complex conjugates of W

↗(J)
l

and W
↘(J)
l , respectively.

6.2. DT-CWPT-Based RMax and CMod Operators. According to (6.1), (6.3), and
(6.4), we can apply Theorems 2.9, 3.11, and 4.2 to the dual-tree framework. More precisely,
for any output channel l ∈

{
0 . . 4J−1

}
, we consider the following RMax and CMod operators:

Umax↗
l : X 7→ MaxPool

((
X ∗ ReW↗(J)

l

)
↓ 2J−1

)
;(6.5)

Umod↗
l : X 7→

∣∣∣(X ∗W↗(J)
l

)
↓ 2J

∣∣∣.(6.6)

Using the notations introduced in (1.5) and (1.1), we have

(6.7) Umax↗
l = Umax

mJ

[
W

↗(J)
l

]
and Umod↗

l := Umod
mJ

[
W

↗(J)
l

]
,

where we have defined mJ := 2J−1. Note that, following Remark 4.4, we have omitted the
grid half-size q, which is equal to 1 (max pooling operates on a grid of size 3×3). Furthermore,
for the sake of brevity, we have omitted the depth J in the above notations.

Remark 6.2. Both Umax↗
l and Umod↗

l are implemented using DT-CWPT with J decom-
position stages. However, in (6.5), the subsampling factor is equal to 2J−1, instead of 2J , as
stated in (6.3). In order to accommodate this property of RMax operators, the last stage of
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(a) J = 2

(b) J = 3

Figure 6. Real part of the convolution kernels W↗(J), W↘(J), with J = 2 (32 filters, mJ = 2) and
J = 3 (128 filters, mJ = 4), respectively. The kernels have been computed using Q-shift orthogonal
QMFs of length 10 [19]. The kernels have been respectively cropped to size 11 × 11 and 19 × 19, for
the sake of legibility. Note that the filters displayed in (a) and (b) share similarities with those found
in, respectively, ResNet (m = 2) and AlexNet (m = 4), after training with ImageNet.

DT-CWPT decomposition is carried out without subsampling, resulting in higher redundancy.
This is similar to the concept of stationary wavelet transform as described by Nason and Sil-
verman [31]. Furthermore, only the real component of the wavelet feature maps is preserved.

On the other hand, Umod↗
l implements a fully-decimated wavelet packet transform, and keeps

both real and imaginary parts. Figure 7 illustrates these technical details.

6.3. Experiments and Results. We implemented the RMax and CMod operators Umax↗
l

and Umod↗
l , as introduced in (6.5) and (6.6), with both J = 2 and 3 stages of wavelet packet

decomposition. To cover the whole frequency plane, we also implemented similar operators,

denoted by Umax↘
l and Umod↘

l . They are associated with the convolution filters W
↘(J)
l , intro-

duced in Proposition B.2, with energy being located in the bottom-right quadrant. However,
as explained in Remark 6.1, we did not need to deal with the two other quadrants (negative
x-values). Using the validation set of ImageNet-1K [39], (N := 50 000 images), we measured
the mean discrepancy between RMax and CMod outputs, and evaluated the shift invariance
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(a) RMax (b) CMod

Figure 7. Detailed illustration of the RMax (a) and CMod (b) operators based on DT-CWPT, with
J = 3 decomposition stages. The numbers between modules correspond to the number of feature maps,
height and width. The orange modules represent subsampled convolutions using one of the four 2D
filter banks G[0−3], such as introduced in (B.1). The FB index is indicated between square brackets.
The RMax model (a) only computes the real part of the dual-tree coefficients, and the last stage
of decomposition is performed without subsampling (red modules). Additionally, the blue modules
represent linear combinations of feature maps such as described in (B.6).

of both models. Dual-tree decompositions have been performed with Q-shift orthogonal filters
of length 10 [19].

6.3.1. MSE between RMax and CMod. Each image n ∈ {0 . . N − 1} in the dataset was
converted to grayscale, from which a center crop of size 224× 224 was extracted. We denote
by Xn ∈ l2R(Z2) the resulting input feature map. For any l ∈

{
0 . . 4J − 1

}
, we denote by

(6.8) Ymax↗
nl := Umax↗

l (Xn) and Ymod↗
nl := Umod↗

l (Xn)

the outputs of the l-th RMax and CMod operators as defined in (6.5) and (6.6), respectively.
We adopt similar notations for the bottom-right Fourier quadrant. Then, the normalized
mean squared error between Ymod↗

nl and Ymax↗
nl was computed. It is defined by the square of

(6.9) ρ↗nl :=
∥∥Ymod↗

nl −Ymax↗
nl

∥∥
2
/
∥∥Ymod↗

nl

∥∥
2
.

Finally, the for each output channel l, an empirical estimate for E
[
P̃2
X

]
, introduced in (3.58),

was obtained by averaging ρ↗2
nl over the whole dataset. We denote by ρ̃↗2

l the corresponding
quantity.

Since Umax↗
l and Umod↗

l are parameterized by W
↗(J)
l , it follows that ρ̃↗2

l depends on

the filter’s characteristic frequency θ
(J)
l (6.4). According to Proposition B.4, these frequencies

form a regular grid in the top-right quadrant of Fourier domain. This provides a visual
representation of ρ̃↗2

l , as shown in Figure 8. This figure also displays ρ̃↘2
l , corresponding to
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Figure 8. Empirical estimates of the normalized mean squared error between RMax and CMod outputs,
computed on ImageNet-1K (validation set). For each channel l ∈

{
0 . . 4J − 1

}
, ρ̃↗2

l is plotted as a

grayscale pixel centered in θ
(J)
l such as introduced in (6.4) (top-right quadrant). Similarly, ρ̃↘2

l is

plotted in the bottom-right quadrant. Finally, the bottom- and top-left quadrants (ρ̃↙2
l and ρ̃↖2

l ) are
simply obtained by symmetrizing the figures. Since the subsampling factor mJ is equal to 2J−1, these
experimental results can be compared with the left and right parts of Figure 5. Note that the low-pass
filters have been discarded because they are outside the scope of this study.

(a) RMax operators

(b) CMod operators

Figure 9. Shift invariance of RMax and CMod outputs, computed on ImageNet 2012 (validation set).

For each l ∈
{
0 . . 4J − 1

}
, ρ̃max↗

l (Figure 9a) and ρ̃mod↗
l (Figure 9b) are plotted by applying the same

procedure as in Figure 8.
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the bottom-right quadrant. The half-plane of negative x-values has simply been symmetrized,
following Remark 6.1. We can observe a regular pattern of dark spots. More precisely, high

discrepancies between max pooling and modulus seem to occur when the energy of W
↗(J)
l or

W
↘(J)
l overlaps a dark region of Figure 5. This result corroborates Theorem 4.2, which states

that high discrepancies are expected for certain pathological frequencies, due to the search for
a maximum value over a discrete grid.

6.3.2. Shift invariance. For each input image previously converted to grayscale, two crops
of size 224×224 were extracted, such that the corresponding sequences Xn and X′

n are shifted
by one pixel along the x-axis. From these inputs, the following quantity was then computed:

(6.10) ρmax↗
nl :=

∥∥Ymax′↗
nl −Ymax↗

nl

∥∥
2
/
∥∥Ymod↗

nl

∥∥
2
,

where Ymax′↗
nl satisfies (6.7) with Xn ← X′

n. Finally, for each output channel l ∈
{
0 . . 4J −

1
}
, an empirical estimate for E

[
R̃X,u

]
, satisfying (4.6) with u = (1, 0)⊤, was obtained by

averaging ρmax↗
nl over the whole dataset. We denote by ρ̃max↗

l the corresponding quantity.
We point out that shift invariance is measured relatively to the norm of the CMod output, as
explained in Remark 4.3.

On the other hand, the same procedure was applied to the CMod operators:

(6.11) ρmod↗
nl :=

∥∥Ymod′↗
nl −Ymod↗

nl

∥∥
2
/
∥∥Ymod↗

nl

∥∥
2
,

and ρ̃mod↗
l was obtained as before by averaging ρmod↗

nl over the whole dataset.

A visual representation of ρ̃max↗
l and ρ̃mod↗

l are provided in Figure 9 (as well as the other
Fourier quadrants). Two observations can be drawn here. (1) When the filter is horizontally
oriented, the corresponding output is highly stable with respect to horizontal shifts. This
can be explained by noticing that such kernels perform low-pass filtering along the x-axis.
The exact transposed phenomenon occurs for vertical shifts. (2) Elsewhere, we observe that
high discrepancies between RMax and CMod outputs (Figure 8) are correlated with shift
instability of RMax (Figure 9, top). This is in line with (3.87) and (4.7) in Theorems 3.11
and 4.2. Note that CMod outputs are nearly shift invariant regardless the characteristic

frequency θ
(J)
l (Figure 9, bottom), as predicted by Theorem 2.9 (2.54).

7. Conclusion. In this paper, we explored the shift invariance properties captured by the
max pooling operator, when applied on top of a convolution layer with Gabor-like kernels. We
established a validity domain for near-shift invariance and confirmed our predictions through
an experimental setting based on the dual-tree complex wavelet packet transform. Our results
indicate that the CMod operator can serve as a stable proxy for RMax, extracting comparable
features, except for certain filter frequencies, for which potential degeneracies can arise after
max pooling. This suggests a promising approach for improving shift invariance in CNNs
while preserving high-frequency information. This is the main focus of [25], in which we apply
these principles to real-life architectures.

A link was missing between real- and complex-valued convolutions in CNNs. By compar-
ing the outputs of CMod and RMax operators, we established a connection between these
two worlds, creating opportunities for extensions of the results obtained for complex wavelet
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transforms. To paraphrase Tygert et al. [47], the correspondence between standard real-valued
CNNs (using max pooling) and complex wavelets is no longer “just a vague analogy.”

Appendix A. Theoretical Foundations for our Hypotheses.
In this section, we provide theoretical arguments for justifying Hypotheses 3.7 and 3.8.

Given n ∈ N \ {0}, we define n-th order stationarity of a given stochastic process F as stated
by Park et al. [34, p. 152]: for any n′ ∈ {0 . . n− 1}, (x1, . . . , xn′) ∈ (R2)n

′
and h ∈ R2, the

joint distribution of
(
F(x1), . . . , F(xn′)

)
is identical to the one of

(
F(x1+h), . . . , F(xn′ +h)

)
.

Besides, strict-sense stationarity is defined as n-th order stationarity for any n ∈ N \ {0}.
We recall that ν := θ/s. We then state the following results.

Proposition A.1. We assume that FX is first-order stationary. If, for any x ∈ R2 and any
h ∈ B2(2π/ ∥ν∥2),

(A.1) (ThFX ∗ ΨW)(x) = ei⟨ν,h⟩(FX ∗ ΨW)(x),

then Hypothesis 3.7 is satisfied.

Proof. Let x ∈ R2. By design (see Remark 3.6), ZX(x) follows a uniform conditional
probability distribution on S1, given MX(x) = 0. In any other cases, we show that the
conditional probability measure of ZX(x) given MX(x) > 0 is invariant with respect to phase
shifts, and is therefore equal to the uniform probability measure on S1. Specifically, we show
that, for any measurable set A ⊂ S1,

(A.2) ∀ω ∈ [0, 2π] , µ(A) = µ(eiωA),

where we have denoted

(A.3) µ : A 7→ P {ZX(x) ∈ A | MX(x) > 0} .

Let h ∈ B2(2π/ ∥ν∥2). According to (A.1), and assuming MX(x) > 0, we get

(A.4) ZX(x) ∈ A ⇐⇒ ThZX(x) ∈ ei⟨ν,h⟩A.

Therefore,

(A.5) P {ZX(x) ∈ A | MX(x) > 0} = P
{
ThZX(x) ∈ ei⟨ν,h⟩A

∣∣ MX(x) > 0
}
.

Since FX is first-order stationary, ZX(x) and ThZX(x) have the same conditional probability
distribution given MX(x) > 0. Thus we get

(A.6) P {ZX(x) ∈ A | MX(x) > 0} = P
{
ZX(x) ∈ ei⟨ν,h⟩A

∣∣ MX(x) > 0
}
.

Let ω ∈ [0, 2π]. Considering h := ω ν/ ∥ν∥22, we have

(A.7) h ∈ B2(2π/ ∥ν∥2) and ⟨ν, h⟩ = ω.

Therefore,

(A.8) ∀ω ∈ [0, 2π] , P {ZX(x) ∈ A | MX(x) > 0} = P
{
ZX(x) ∈ eiωA

∣∣ MX(x) > 0
}
,
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which yields (A.2).
Any probability measure defined on S1 is a Radon measure. Therefore, according to

Haar’s theorem [15], there exists a unique probability measure on S1 satisfying (A.2). Since
the uniform probability measure is also invariant to phase shifts, we deduce that ZX(x) is
uniformly distributed on S1, conditionally to MX(x) > 0, which concludes the proof.

Proposition A.2. We assume the conditions of Proposition A.1 are met. If, moreover, FX
is strict-sense stationary, then Hypothesis 3.8 is satisfied.

Proof. Let n ∈ N \ {0} and x, y0, . . . , yn−1 ∈ R2. To alleviate notations, we consider the

random vector M =
(
MX(y0), . . . , MX(yn−1)

)⊤
with outcomes in Rn

+. According to (3.53),
ZX(x) is conditionally independent of M given MX(x) = 0. Therefore, it remains to prove
conditional independence given MX(x) > 0.

The proof is organized as follows. Using a similar reasoning as Proposition A.1, we show
that, for any measurable subset S ⊂ Rn

+, ZX follows a uniform probability distribution
conditionally to M ∈ S and MX(x) > 0. Since we already know that ZX follows a uniform
distribution conditionally to MX(x) > 0 alone, we deduce that ZX and M are conditionally
independent given MX(x) > 0.

Let A ⊂ S1 and S := (Si)i∈{0..n−1} ⊂ Rn
+ denote measurable sets. According to (A.1),

and assuming MX(x) > 0, we get, for any h ∈ B2(2π/ ∥ν∥2),

ZX(x) ∈ A ⇐⇒ ThZX(x) ∈ ei⟨ν,h⟩A;(A.9)

MX(yi) ∈ Si ⇐⇒ ThMX(yi) ∈ Si ∀i ∈ {0 . . n− 1} .(A.10)

Therefore,

(A.11) P
{
(ZX(x) ∈ A) & (M ∈S)

∣∣∣ MX(x) > 0
}

= P
{(
ThZX(x) ∈ ei⟨ν,h⟩A

)
& (ThM ∈S)

∣∣∣ MX(x) > 0
}
.

Since FX is strict-sense stationary, the joint conditional probability density of

(A.12) ThZX(x), ThMX(y0), . . . , ThMX(yn−1)

is identical to the one of

(A.13) ZX(x), MX(y0), . . . , MX(yn−1).

Therefore we get

(A.14) P
{
(ZX(x) ∈ A) & (M ∈S)

∣∣∣ MX(x) > 0
}

= P
{(

ZX(x) ∈ ei⟨ν,h⟩A
)
& (M ∈S)

∣∣∣ MX(x) > 0
}
.

We assume that P(M ∈ S) > 0. According to the above expression, and similarly to the
proof of Proposition A.1, we get,

(A.15) ∀ω ∈ [0, 2π] , P
{
ZX(x) ∈ A

∣∣∣ (M ∈S) & (MX(x) > 0)
}

= P
{
ZX(x) ∈ eiωA

∣∣∣ (M ∈S) & (MX(x) > 0)
}
.
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Then, the above conditional probability measure satisfies phase shift invariance (A.2). There-
fore, as in the proof of Proposition A.1, Haar’s theorem implies that ZX(x) follows a uniform
conditional distribution given M ∈S and MX(x) > 0.

Moreover, strict-sense implies first-order stationarity, and thus, according to the proof of
Proposition A.1, ZX(x) follows a uniform distribution conditionally to MX(x) > 0. Therefore
we get, for any measurable sets A ⊂ S1 and S ⊂ Rn

+ such that P(M ∈S) > 0,

(A.16) P
{
ZX(x) ∈ A

∣∣ (M ∈S) & (MX(x) > 0)
}
= P

{
ZX(x) ∈ A

∣∣ MX(x) > 0
}
,

which proves conditional independence between ZX(x) andM givenMX(x) > 0, and concludes
the proof.

Remark A.3 (Stationarity hypothesis). Strict-sense stationarity suggests that any trans-
lated version of a given image is equally likely. In reality, this statement is too strong, for
several reasons. First, by construction, X has all its realizations in L2

R(R2). In that context,
a stationary process yields outcomes which are zero almost everywhere. Besides, depending
on which category the image belongs to, the pixel distribution is likely to vary across various
regions. For instance, we can expect the main subject to be located at the center of the image.
More details on statistical properties of images from natural versus man-made objects can be
found in a paper by Torralba and Oliva [46]. Nevertheless, this hypothesis will be considered
as a reasonable approximation if the shift is much smaller than the image “characteristic” size
in the continuous domain; i.e., if

(A.17) ∥h∥2 ≪ sN,

where, as a reminder, N denotes the support size of input images. We refer the reader to
[47] for a related notion of local stationarity. As it turns out, the proofs of Propositions A.1
and A.2 only requires shifts with ∥h∥2 ≤ 2π/ ∥ν∥2. Therefore, the constraint on ∥θ∥2 stated
in (3.56) implies (A.17), and the stationarity hypothesis holds.

Remark A.4 (Justification for (A.1)). We consider

(A.18) ΦW : x 7→ ΨW(x)e−i⟨ν,x⟩.

Similarly to Lemma 2.2, we can show that ΦW is a low-pass filter, with supp Φ̂W ⊂ B∞(ε/2).
For all h ∈ R2 such that ∥h∥2 ≤ 2π/ ∥ν∥2, we have

(ThFX ∗ ΨW)(x) =

∫∫
R2

ThFX(x− y)ΦW(y) e−i⟨ν,y⟩ d2y

= ei⟨ν,h⟩
∫∫

R2

FX(x− y′)ΦW(y′ − h) e−i⟨ν,y′⟩ d2y′.

Since supp Φ̂W ⊂ B∞
(
κ
2s

)
, we can define a “minimal wavelength” λΦW

:= 2πs/κ. Then, if
∥h∥2 ≪ λΦW

, we can approximate ΦW(y′−h) ≈ ΦW(y′). This sufficient condition is actually
met, because ∥h∥2 ≤ 2π/ ∥ν∥2 and, according to (3.57), ∥ν∥2 ≫ κ/s. Therefore,

(A.19) (ThFX ∗ ΨW)(x) ≈ ei⟨ν,h⟩(FX ∗ ΨW)(x).
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As explained in Remarks A.3 and A.4, the sufficient conditions outlined in Propositions A.1
and A.2 are not strictly met. Nevertheless, we consider that Hypotheses 3.7 and 3.8 still
provide a reasonable description of the distribution from which input images are drawn.

Appendix B. Details on DT-CWPT. A description of the transform itself is provided
in Appendix B.1. Then, Appendix B.2 shows that DT-CWPT performs convolutions with a
subsampling factor mJ which depends on the decomposition depth J . Finally, the Gabor-like
nature of the convolution kernels is established in Appendix B.3.

B.1. Background. We provide a brief overview of the classical, real-valued 2D wavelet
packet transform (WPT) algorithm [27, p. 377], before introducing the redundant, complex-
valued and oriented DT-CWPT [4].

B.1.1. Discrete Wavelet Packet Transform. Given a pair of low- and high-pass 1D or-
thogonal filters h, g ∈ l2R(Z) satisfying a quadrature mirror filter (QMF) relationship, we
consider a separable 2D filter bank (FB), denoted by G := (Gl)l∈{0..3}, defined by

G0 = h⊗ h; G1 = h⊗ g; G2 = g ⊗ h; G3 = g ⊗ g.(B.1)

Let X ∈ l2R(Z). The decomposition starts with D
(0)
0 = X. Given j ∈ N, suppose that we

have computed 4j sequences of wavelet packet coefficients at stage j, denoted by D
(j)
l ∈ l

2
R(Z)

for each l ∈
{
0 . . 4j − 1

}
. They are referred to as feature maps.

At stage j+1, we compute a new representation of X with increased frequency resolution—

and decreased spatial resolution. It is obtained by further decomposing each feature map D
(j)
l

into four sub-sequences, using subsampled (or strided) convolutions with kernels Gk, for each
k ∈ {0 . . 3}:

(B.2) ∀k ∈ {0 . . 3} , D(j+1)
4l+k =

(
D

(j)
l ∗Gk

)
↓ 2.

The algorithm stops after reaching the desired number of stages J > 0—referred to as
decomposition depth. Then,

(B.3) D(J) :=
(
D

(J)
l

)
l∈{0..4J−1}

constitutes a multichannel representation of X in an orthonormal basis, from which the original
image can be retrieved.

B.1.2. Dual-Tree Complex Wavelet Packet Transform. Despite having interesting prop-
erties such as sparse signal representation, WPT is unstable with respect to small shifts
and suffers from a poor directional selectivity. To overcome this, Kingsbury [18] designed a
new type of discrete wavelet transform, where images are decomposed in a redundant frame
of nearly-analytic, complex-valued waveforms. It was later extended to the wavelet packet
framework by Bayram and Selesnick [4]. The latter operation, referred to as dual-tree complex
wavelet packet transform (DT-CWPT), is performed as follows.

Let (h[0], g[0]) and (h[1], g[1]) denote two pairs of QMFs as defined in Appendix B.1.1,
satisfying the half-sample delay condition:

(B.4) ∀ω ∈ [−π, π] , ĥ[1](ω) = e−iω/2 ĥ[0](ω).
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Then, for any k ∈ {0 . . 3}, we build a 2D FB Gk := (Gk, l)l∈{0..3} similarly to (B.1):

Gk, 0 = hi ⊗ hj ; Gk, 1 = hi ⊗ gj ; Gk, 2 = gi ⊗ hj ; Gk, 3 = gi ⊗ gj ,(B.5)

where i, j ∈ {0, 1} are defined such that k = 2× i+ j.3

Let J > 0 denote a decomposition depth. Using each of the four FBs G0−3 as defined
above, we assume that we have decomposed an input image X into four multichannel WPT

representations D
(J)
0−3, each of which satisfies (B.2) and (B.3). Then, for any l ∈

{
0 . . 4J − 1

}
,

the following complex feature maps are computed:

(B.6)

D
↗(J)
l

D
↘(J)
l

 =

1 −1

1 1

D
[0](J)
l

D
[3](J)
l

− i
1 1

1 −1

D
[2](J)
l

D
[1](J)
l

 .

As explained in Appendix B.3, the feature maps of dual-tree coefficients have their Fourier
transform restricted to a compact region of the frequency plane, and as such can be considered
as Gabor-like coefficients. In the above expression, the arrow points to the Fourier quadrant
where energy is concentrated. Furthermore, in the specific case where input images are real-

valued, D
↙(J)
l and D

↖(J)
l are defined as the complex conjugates of the above feature maps,

and therefore do not need to be explicitly computed. Then,

(B.7) D(J) :=
(
D

↗(J)
l , D

↘(J)
l , D

↙(J)
l , D

↖(J)
l

)
l∈{0..4J−1}

constitutes a complex-valued, four-time redundant multichannel representation of X from
which the original image can be reconstructed.

B.2. Convolution Operators. We now show that DT-CWPT performs subsampled con-
volutions with Gabor-like filters, whose characteristics will be specified. First, we state the
following lemma concerning the real-valued WPT algorithm, such as introduced in Appen-
dix B.1.1. It is a simple reformulation of the well-known result that two successive convolutions
can be written as another convolution with a wider kernel.

Lemma B.1. For any l ∈
{
0 . . 4J − 1

}
, there exists V

(J)
l ∈ l2R(Z2) such that

(B.8) D
(J)
l =

(
X ∗V(J)

l

)
↓ 2J .

Proof. We introduce the upsampling operator: (X ↑ m)[n] := X[n/m] if n/m ∈ Z2, and
0 otherwise. We also consider the “identity” filter I ∈ l2R(Z2) such that I[0] = 1 and I[n] = 0
otherwise. First, for any U, V ∈ l2R(Z2) and any s, t ∈ N∗, we have

(B.9) ((U ↓ s) ∗V) ↓ t = (U ∗ (V ↑ s)) ↓ (st).

Then, a simple reasoning by induction yields the result, with

(B.10) V
(0)
0 := I; V

(j+1)
4l+k := V

(j)
l ∗

(
Gk ↑ 2j

)
for any l ∈ {0 . . j − 1} and any k ∈ {0 . . 3}.

3Actually, the FB design requires some technicalities which are not described here.
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Based on Lemma B.1, the following proposition introduces complex kernels characterizing
DT-CWPT.

Proposition B.2. For any l ∈
{
0 . . 4J − 1

}
, there exists W

↗(J)
l ∈ l2C(Z2) such that (6.3) is

satisfied. Identical results are obtained with the three other Fourier quadrants.

Proof. For each of the four filter banks m ∈ {0 . . 3}, and any channel l ∈
{
0 . . 4J − 1

}
,

Lemma B.1 provides a convolution kernel V
[m](J)
l ∈ l2R(Z2) such that

(B.11) D
[m](J)
l =

(
X ∗V[m](J)

l

)
↓ 2J .

Then, the result is obtained by plugging (B.11) into (B.6) for all m ∈ {0 . . 3}, and by denoting

(B.12)

W↗(J)l

W↘(J)l

 =

1 −1

1 1

V
[0](J)
l

V
[3](J)
l

+ i

1 1

1 −1

V
[2](J)
l

V
[1](J)
l

 .

Remark B.3. DT-CWPT, computed on a discrete image X, approximates the decomposi-
tion of a continuous 2D signal F ∈ L2

R(R2) into a tight frame

(B.13) Ψ
(J)
C :=

4J−1⊎
l=0

(
Ψ
↗(J)
l,n , Ψ

↘(J)
l,n , Ψ

↙(J)
l,n , Ψ

↖(J)
l,n

)
n∈Z2 .

In this context, the feature maps of dual-tree wavelet packet coefficients satisfy

(B.14) D
↗(J)
l [n] ≈

(
F ∗ Ψ↗(J)

l

∗)
(2Jn), with Ψ

↗(J)
l := Ψ

↗(J)
l,0 .

Expression (B.14) is only an approximation because of implementation technicalities that oc-
cur in practice. A “perfect” dual-tree transform should be initialized with four different inputs
X[0−3]. Instead, all four WPT decompositions operate on the same input image X, leading to
non-analytic outputs for small values of J . In order to counterbalance this shortcoming, the
first stage of DT-CWPT decomposition must be performed with a special set of filters that
satisfy the one-sample delay condition. We refer to [41] for more details on this matter.

B.3. Gabor-Like Convolution Kernels. In this section, we show that the convolution

kernels W
↗(J)
l and W

↘(J)
l , introduced in (6.3), approximately behave as Gabor-like filters, as

defined in (2.5). To begin with, we assume that h[0] is a Shannon filter, which is associated with
a sinc scaling function [42]. Let J ∈ N \ {0} denote the number of decomposition stages. The
following proposition states that DT-CWPT tiles the frequency plane with square windows.

Proposition B.4. There exists a permutation
(
σ
(J)
l

)
l∈{0..4J−1} of

{
0 . . 2J − 1

}2
such that,

for any l ∈
{
0 . . 4J − 1

}
,

(B.15) Ψ
↗(J)
l ∈ V

(
θ
(J)
l , κJ

)
,

where Ψ
↗(J)
l has been introduced in Remark B.3, and where we have defined

(B.16) θ
(J)
l :=

(
σ
(J)
l +

1

2

)
π

2J
and κJ :=

π

2J
.
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We remind the reader that V
(
ν, ε

)
, defined in (2.2), denotes a space of Gabor-like filters in

the continuous framework.

Proof. The atoms Ψ
↗(J)
l of the wavelet packet tight frame Ψ

(J)
C can be written as the

tensor product of two 1D wavelet packets:

(B.17) Ψ
↗(J)
l = ψ

(J)
l1
⊗ ψ(J)

l2
,

for some indices l1 and l2 ∈
{
0 . . 2J − 1

}
. Moreover, for any l′ ∈

{
0 . . 2J − 1

}
, we have

(B.18) ψ
(J)
l′ = ψ

[0](J)
l′ + i ψ

[1](J)
l′ ,

where ψ
[0](J)
l′ ∈ L2

R(R) is an atom of the standard Shannon wavelet packet orthonormal basis,

and ψ
[1](J)
l′ is the one-dimensional Hilbert transform of ψ

[0](J)
l′ . Therefore, since the Hilbert

transform suppresses negative frequencies, we get

(B.19) ψ̂
(J)
l′ = 2 ψ̂

[0](J)
l′ 1R+ .

Consequently, according to the Coifman-Wickerhauser theorem [27, pp. 384-385], there exists
k ∈

{
0 . . 2J − 1

}
such that

(B.20) supp ψ̂
(J)
l′ ⊂

[
kπ

2J
,
(k + 1)π

2J

]
.

Finally, the tensor product (B.17) yields the result.

According to Proposition B.4, each atom Ψ
↗(J)
l , for l ∈

{
0 . . 4J − 1

}
, is supported in

a square window of size κJ × κJ included in the top-right quadrant of the Fourier domain.

Similar results can be obtained for the three remaining quadrants, with Ψ
↘(J)
l , Ψ

↙(J)
l and

Ψ
↖(J)
l . We would like to deduce from Proposition B.4 that the discrete filter W

↗(J)
l ∈ l2C(Z2)

satisfies the Gabor property (6.4). However, as mentioned in Remark B.3, (B.14) is only an

approximation. In fact, the Fourier support of W
↗(J)
l is contained in four square regions of

size κJ (one in each quadrant), its energy becoming negligible outside the top-right quadrant
when J increases. Nevertheless, employing, in the first stage, a specific pair of low-pass filters
satisfying the one-sample delay condition [41] yields near-analytic solutions even for small
values of J . We therefore consider (6.4) as a reasonable approximation if J ≥ 2.

Remark B.5. Proposition B.4 tiles the top-right Fourier quadrant with 4J square cells of
size κJ := π/2J . However, the Shannon wavelet is poorly suited for sparse image represen-
tations, because of its slow decay rate. Moreover, it deviates from what is typically observed

in freely-trained CNNs, because W
↗(J)
l must be approximated with very large filters to avoid

numerical instabilities. Practical implementations of DT-CWPT use fast-decaying filters such
as these associated to Meyer wavelets [30], or finite-length filters that approximate the half-
sample delay condition [41]. Therefore, energy is leaking outside the square cells tiling the
Fourier domain. To counterbalance this, we increase the window size up to

(B.21) κJ :=
π

2J−1
= π/mJ ,
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Depth J Bandwidth κJ Mean Std

2 π/2 0.98 0.00

3 π/4 0.95 0.02

Table 1. Energy concentration of the DT-CWPT filters within a Fourier window of size κJ × κJ , with
κJ := π/2J−1.

and consider that (6.4) remains a reasonable approximation. Therefore, the conditions to
apply Theorems 2.9, 3.11, and 4.2 are approximately satisfied in this context.

In order to numerically assess this assumption, we measured the maximum percentage of
energy within a square window of size κJ × κJ in the Fourier domain:

(B.22) ρ↗l :=
maxθ∈[−π, π]2

∥∥∥1B∞(θ, κJ/2)Ŵ
↗(J)
l

∥∥∥2
L2∥∥∥Ŵ↗(J)

l

∥∥∥2
L2

,

where the l∞-ball B∞(θ, κJ/2) is defined in the quotient space [−π, π]2 /(2πZ2), as explained

in Remark 2.1. If (6.4) is perfectly satisfied, then ρ↗l = 1. The statistics computed over the

collection
(
ρ↗l , ρ

↘
l

)
l∈{0..4J−1} are reported in Table 1.

Remark B.6. For “boundary filters”, i.e., when
∥∥θ(J)

l

∥∥
∞ =

(
1 − 2−(J+1)

)
π, Remark 2.1

states that a small fraction of the filter’s energy remains located at the far end of the Fourier
domain—see also [4]. Therefore, these filters do not strictly comply with the conditions of
Theorems 2.9, 3.11, and 4.2. We nevertheless include them in our experiments.
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