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Abstract

Despite significant advancements in computer vision over the past decade, convolutional
neural networks (CNNs) still suffer from a lack of mathematical understanding. In par-
ticular, stability properties with respect to small transformations such as translations,
rotations, scaling or deformations are only partially understood. While there is a broad
literature on this topic, some gaps remain, specifically with regard to the combined effect
of convolution and max pooling layers in producing near shift-invariant feature represen-
tations. This property is of utmost importance for classification, since two shifted versions
of a single input image are expected to receive the same label.

It is well-known that subsampled convolutions with band-pass filters are prone to
producing unstable image representations when inputs are shifted by a few pixels. The
first contribution of this thesis consists in proving that a nonlinear max pooling operator
can partially restore shift invariance. By applying results from the wavelet theory, and
adopting a probabilistic point of view, we reveal a similarity between the max pooling of
real-valued convolutions, as implemented in conventional architectures, and the modulus
of complex-valued convolutions, for which a measure of shift invariance is established.

However, for specific filter frequencies, this similarity is lost, and CNNs become un-
stable to translations. This phenomenon, known as aliasing, can be avoided by employing
additional low-pass filters in strategic locations of the network architecture, as several
authors have done in recent years. While their methods effectively increase both shift in-
variance and prediction accuracy, they come at the cost of significant loss of high-frequency
information. As a second contribution, we present a novel antialiasing method which, un-
like previous methods, preserves this information. Relying on our theoretical study, the
key idea is to exploit the properties of complex convolutions to guarantee near-shift in-
variance for any filter frequency. By adding an imaginary part to high-frequency kernels
and replacing the max pooling layer with a simple modulus operator, we empirically ev-
idence an increase in the network’s stability and a lower error rate compared to previous
approaches based on low-pass filtering.

In conclusion, the aim of this thesis is twofold: improving the mathematical under-
standing of CNNs from the perspective of shift invariance, and improving the tradeoff
between stability and information preserving, based on our theoretical contribution which
is grounded in wavelet theory. Our findings thus have the potential to positively im-
pact various applications of computer vision, especially in fields that require theoretical
guarantees.





Résumé

Malgré des progrès spectaculaires en vision par ordinateur au cours de la dernière dé-
cennie, les réseaux de neurones convolutifs (CNN) souffrent toujours d’un faible niveau
de compréhension mathématique. En particulier, les propriétés de stabilité vis-à-vis de
petites transformations (translations, rotations, mises à l’échelle, déformations) ne sont
que partiellement comprises. Bien qu’il existe une vaste littérature sur ce sujet, certaines
lacunes subsistent, notamment concernant l’effet combiné des couches de convolution et
de max pooling dans la génération de représentations quasi-invariantes. Cette propriété
est primordiale pour la classification, puisqu’il est attendu que deux versions translatées
d’une même image soient classifiées de manière identique.

Les convolutions sous-échantillonnées avec des filtres passe-bande sont connues pour
produire des représentations instables lorsque les images en entrée sont translatées de
quelques pixels. La première contribution de cette thèse consiste à prouver qu’un opérateur
non linéaire de max pooling est susceptible de partiellement restaurer l’invariance par
translation. En appliquant des résultats issus de la théorie des ondelettes, et en adoptant un
point de vue probabiliste, nous révélons une similitude entre le max pooling de convolutions
à valeurs réelles, tel qu’implémenté dans les architectures conventionnelles, et le module
de convolutions à valeurs complexes, pour lequel une mesure d’invariance par translation
est établie.

Cependant, pour certaines fréquences de filtre, une telle similitude ne se vérifie pas
et les CNN deviennent instables face aux petites translations. Ce phénomène, connu sous
le nom d’aliasing, peut être évité en appliquant des filtres passe-bas supplémentaires à
des endroits stratégiques du réseau, comme plusieurs auteurs l’ont proposé au cours des
dernières années. Ces méthodes, bien qu’elles améliorent sensiblement l’invariance par
translation et la qualité des prédictions, impliquent une perte importante d’informations
de haute fréquence. Comme seconde contribution, nous présentons une nouvelle méthode
d’antialiasing qui, contrairement aux précédentes, préserve cette information. En s’ap-
puyant sur notre étude théorique, l’idée clé est d’exploiter les propriétés des convolutions
complexes pour garantir une quasi-invariance par translation quelle que soit la fréquence
du filtre. En ajoutant une partie imaginaire aux filtres de haute fréquence et en rempla-
çant l’opérateur de max pooling par un simple module, nous mettons empiriquement en
évidence une augmentation de la stabilité du réseau et un taux d’erreur plus faible par
rapport aux approches précédentes basées sur des filtres passe-bas.

En conclusion, l’objectif de cette thèse est double : améliorer la compréhension ma-
thématique des CNN en termes d’invariance par translation, et améliorer le compromis
entre stabilité et préservation de l’information, sur la base de notre contribution théorique
fondée sur la théorie des ondelettes. Ces travaux ont donc le potentiel d’impacter positi-
vement diverses applications de la vision par ordinateur, en particulier dans les domaines
nécessitant des garanties théoriques.





Remerciements

Tout d’abord, je remercie chaleureusement ma directrice de thèse, Valérie, ainsi que mon
co-directeur, Karteek, pour m’avoir accompagné avec bienveillance et exigence tout au
long de ces années de doctorat. Un grand merci également à Kévin pour nos longues
séances de réflexion et de discussion, tant sur le plan scientifique que philosophique ! Vos
conseils éclairés, votre disponibilité et votre complémentarité ont été des atouts essentiels
qui m’ont permis de mener à bien ce projet.

Je tiens à remercier Nelly Pustelnik et François Malgouyres d’avoir accepté de rap-
porter cette thèse, pour leurs retours pertinents et les discussions constructives qui ont
suivi. Je souhaite par ailleurs remercier les autres membres du jury, à commencer par
Massih-Reza Amini pour avoir accepté de le présider. Je n’oublie pas que tu as été mon
premier point de contact lorsque j’ai décidé de reprendre des études universitaires. Mes
sincères remerciements vont également à Gabriel Peyré pour son accompagnement lors
des comités de suivi individuels et ses précieux conseils, ainsi qu’à Joan Bruna, dont les
travaux inspirants ont guidé ma recherche.

Cette thèse est le fruit d’un long processus de reconversion professionnelle, après avoir
passé plusieurs années en tant qu’ingénieur et analyste des données. Je tiens à exprimer
ma reconnaissance envers Laurent et Asma, qui ont joué un rôle essentiel en me montrant
que cette reconversion était possible et en m’aidant à cheminer en ce sens.

Un tel projet n’aurait assurément pas pu être réalisé sans l’ambiance chaleureuse qui
règne au laboratoire. Je remercie ainsi mes collègues et ami-e-s de l’Imag et de l’Inria pour
tous ces instants de discussion et de détente qui ont probablement eu raison de la machine
à café ! En particulier, merci à mes chers co-bureau : Anatole, Carlos et Yu-Guan ; à mes
compagnons du Diderot : Manon, Nils, Sélim, Margaux, Dima, Sylvain, Sergeï, David,
Alexandre, Kajal, Chi, Yunjiao ; sans oublier bien-sûr Gilles, Thibault, JB, Flora, Waïss,
Victor, Yassine, Benji, Amine, Gabriel, Juliette, Zhiqi, et toutes les personnes que j’ai
pu oublier. Merci également au personnel administratif du laboratoire, avec une mention
spéciale pour Laurence.

Une autre composante essentielle de ma vie grenobloise a été le Chœur Universitaire,
qui m’a offert une véritable bouffée d’oxygène, des moments riches en émotion et de belles
amitiés. Je souhaite donc remercier toutes les personnes avec qui j’ai partagé cette aven-
ture musicale. Par ailleurs, ces années de préparation au doctorat ont été marquées par de
longues périodes d’isolement en raison de la pandémie de Covid-19. Heureusement, j’ai pu
compter, tant dans ces moments difficiles que lors de retrouvailles, sur la présence indé-
fectible de mes amis de longue date. Un immense merci à François, Alexandre, Benjamin,
Sandra, Anne-Laure, Maxence, Pierre-Louis, Thibaut, Camille, Arthur, Sylvain, Thibaut,
et bien d’autres, pour tous ces moments partagés, dans la vie réelle comme par écran
interposé. J’ai une pensée particulière pour Carolina, qui nous a quittés bien trop tôt.

Pour finir, j’exprime ma profonde gratitude envers ma famille, qui m’a soutenu de façon
inconditionnelle pendant toutes ces années. Envers mes parents, Annie et Emmanuel, qui
ont été présents à chaque étape de mon parcours professionnel et ont souvent été en
première ligne lors de mes moments de doute et de découragement. Le rôle que vous avez
joué est inestimable. Envers mes frères et sœurs, Anne-Claire, Pierre-Hugues et Bénédicte,
et leurs moitiés. Envers mes oncles et tantes, en particulier Brigitte et Gabriel, ainsi que
mes cousins et cousines. Envers mes formidables mamies, Henriette et Agnès, à qui je
dédie cette thèse.





Acknowledgments

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-
0025-01) funded by the French program Investissement d’avenir, as well as the ANR grant
MIAI (ANR-19-P3IA-0003). Most of the computations presented in this thesis were per-
formed using the GRICAD infrastructure (https://gricad.univ-grenoble-alpes.fr),
which is supported by Grenoble research communities.

https://gricad.univ-grenoble-alpes.fr




Contents

List of Figures iv

List of Tables v

List of Symbols vi

1 Introduction 1
1.1 Themes and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Studying Invariance Properties in CNNs . . . . . . . . . . . . . . . . 2
1.1.2 Introducing Gabor Inductive Bias to the Network . . . . . . . . . . . 4
1.1.3 Improving Shift Invariance in CNNs . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Studying Shift Invariance of Max Pooling Feature Maps . . . . . . . 6
1.2.2 Improving Shift Invariance with Complex Convolutions . . . . . . . 7

1.3 Publications and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background on Deep Learning 9
2.1 The Linear Classification Problem . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 The Two-Class Problem . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Examples of Linear Classifiers . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Beyond Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Multilayer Perceptrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Parametric Feature Extractor . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Convolution Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Advances in CNNs for Image Classification . . . . . . . . . . . . . . 22
2.3.4 Beyond CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Feature Extraction Properties in CNNs . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Gabor-Like Patterns in Trained Convolution Kernels . . . . . . . . . 26
2.4.2 CNNs are Generally Not Shift Invariant . . . . . . . . . . . . . . . . 27
2.4.3 Focus on the Max Pooling Layer . . . . . . . . . . . . . . . . . . . . 29
2.4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



CONTENTS

3 Background on Wavelet Analysis 30
3.1 Sparse Representations of Images . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 General Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Sparse Coding in Orthonormal Bases . . . . . . . . . . . . . . . . . . 32
3.1.3 Toward Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Filter Bank Decomposition and Wavelet Bases . . . . . . . . . . . . . . . . 36
3.2.1 Filter Bank Decomposition with Perfect Reconstruction . . . . . . . 36
3.2.2 Link with Wavelets Defined on the Continuous Domain . . . . . . . 38
3.2.3 Sparsity of Wavelet Representations . . . . . . . . . . . . . . . . . . 41
3.2.4 Examples of Wavelet Bases . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.5 Discrete Wavelet Packet Transform . . . . . . . . . . . . . . . . . . . 45
3.2.6 Discrete Wavelet Transforms are Unstable to Translations . . . . . . 46

3.3 Complex Redundant Discrete Wavelet Transforms . . . . . . . . . . . . . . 48
3.3.1 General Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Complex Wavelet Tight Frames . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Dual-Tree Filter Bank Decomposition . . . . . . . . . . . . . . . . . 51
3.3.4 The Dual-Tree Complex Wavelet Packet Transform . . . . . . . . . . 53

3.4 The Wavelet Scattering Transform . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.1 Lipschitz-Continuity to Diffeomorphisms . . . . . . . . . . . . . . . . 55
3.4.2 General Principles of the Wavelet Scattering Transform . . . . . . . 56
3.4.3 Properties of the Wavelet Scattering Transform . . . . . . . . . . . . 58
3.4.4 Deep Learning with Wavelet Scattering Networks . . . . . . . . . . . 59

3.5 Wavelets Meet CNNs, Beyond Scattering Networks . . . . . . . . . . . . . . 60
3.5.1 Wavelet-Based Feature Extraction and CNNs . . . . . . . . . . . . . 60
3.5.2 Theoretical Studies in CNNs . . . . . . . . . . . . . . . . . . . . . . 61
3.5.3 What is Missing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Shift Invariance of Max Pooling Feature Maps 64
4.1 Motivations and Main Contributions . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Shift Invariance of CMod Outputs . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.2 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Continuous Framework . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.4 Adaptation to Discrete 2D Sequences . . . . . . . . . . . . . . . . . 71
4.2.5 Shift Invariance in the Discrete Framework . . . . . . . . . . . . . . 74

4.3 From CMod to RMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Continuous Framework . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Adaptation to Discrete 2D Sequences . . . . . . . . . . . . . . . . . 80
4.3.3 Notations on the Unit Circle . . . . . . . . . . . . . . . . . . . . . . 84
4.3.4 Probabilistic Framework . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.5 Expected Quadratic Error between RMax and CMod . . . . . . . . 86

4.4 Shift Invariance of RMax Outputs . . . . . . . . . . . . . . . . . . . . . . . 93
4.5 Adaptation to Multichannel Convolution Operators . . . . . . . . . . . . . . 95
4.6 A Case Study Implementing DT-CWPT . . . . . . . . . . . . . . . . . . . . 97

4.6.1 Convolution Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6.2 Gabor-Like Convolution Kernels . . . . . . . . . . . . . . . . . . . . 99

ii



CONTENTS

4.6.3 DT-CWPT-Based RMax and CMod Operators . . . . . . . . . . . . 101
4.6.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.A Appendix: Theoretical Foundations for our Hypotheses . . . . . . . . . . . 105

5 Shift-Invariant Twin Models 109
5.1 Existing vs Proposed Antialiasing Methods . . . . . . . . . . . . . . . . . . 110
5.2 Subject of Study: First Layers in CNNs . . . . . . . . . . . . . . . . . . . . 111
5.3 Applicability of our Theoretical Results to CNNs . . . . . . . . . . . . . . . 113

5.3.1 Identifying the Gabor-like Kernels . . . . . . . . . . . . . . . . . . . 113
5.3.2 Monochrome Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.3 Kernel Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Design of the CMod-based Antialiased Models . . . . . . . . . . . . . . . . 117
5.4.1 Antialiasing Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.4.2 Wavelet-Based Twin Models (WCNNs) . . . . . . . . . . . . . . . . 117
5.4.3 Antialiased WCNNs with CMod . . . . . . . . . . . . . . . . . . . . 119
5.4.4 WCNNs with Blur Pooling . . . . . . . . . . . . . . . . . . . . . . . 119
5.4.5 Adaptation to ResNet: Batch Normalization . . . . . . . . . . . . . 120

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.1 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6.1 Kernel Visualization and Characteristic Frequencies . . . . . . . . . 123
5.6.2 Validation and Test Accuracy . . . . . . . . . . . . . . . . . . . . . . 125
5.6.3 Shift Invariance (KL Divergence) . . . . . . . . . . . . . . . . . . . . 128
5.6.4 Accuracy vs Consistency . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.6.5 Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . 129
5.6.6 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.A Appendix: Technical Complements . . . . . . . . . . . . . . . . . . . . . . . 131

5.A.1 Design of WCNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.A.2 Batch Normalization in ResNet . . . . . . . . . . . . . . . . . . . . . 132
5.A.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.B Appendix: Computational Cost . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.C Appendix: Memory Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Conclusion and Perspectives 146
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.1.1 Theoretical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.1.2 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.2.1 Beyond Translation Invariance . . . . . . . . . . . . . . . . . . . . . 148
6.2.2 What About Small Convolution Kernels? . . . . . . . . . . . . . . . 150
6.2.3 Learning Optimal Filters for DT-CWPT . . . . . . . . . . . . . . . . 151
6.2.4 From CNNs to Vision Transformers . . . . . . . . . . . . . . . . . . 151

6.3 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Bibliography 153

iii



List of Figures

1.1 AlexNet Convolution Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 ILSVRC Classification Challenge . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Learned Basis Functions (Olshausen and Field, 1996) . . . . . . . . . . . . 35
3.2 Discrete and Continuous Basis Functions (FWT) . . . . . . . . . . . . . . . 40
3.3 Illustration of Aliasing Effects . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Discrete and Continuous Basis Functions (DT-CWT) . . . . . . . . . . . . 53

4.1 Max Pooling Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Polar Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Expected Discrepancy between RMax and CMod . . . . . . . . . . . . . . . 91
4.4 WPT and DT-CWPT Kernels . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5 Schematic Representations of DT-CWPT-based Operators . . . . . . . . . 102
4.6 Experiments: Discrepancies between RMax and CMod . . . . . . . . . . . . 103
4.7 Experiments: Shift Invariance of RMax and CMod Operators . . . . . . . . 103

5.1 Example of Gabor-like Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Gabor-like Kernels in AlexNet and ResNet-34 . . . . . . . . . . . . . . . . 114
5.3 Box Plots: Monochorome Filters . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4 Box Plots: Gabor-likeness of Trained Convolution Kernels . . . . . . . . . 116
5.5 AlexNet-based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.6 ResNet-based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7 WCNN Convolution Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.8 Scatter Plots: Characteristic Frequencies . . . . . . . . . . . . . . . . . . . 125
5.9 Results: Training Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.10 Results: KL Divergence Measuring Shift Invariance . . . . . . . . . . . . . 127
5.11 Results: Accuracy vs Consistency . . . . . . . . . . . . . . . . . . . . . . . 129
5.12 Schematic Representations of Wavelet Blocks . . . . . . . . . . . . . . . . . 132
5.13 Feature Map Selection in WCNNs . . . . . . . . . . . . . . . . . . . . . . . 138
5.14 Box Plots: Gabor-likeness of DT-CWPT Filters . . . . . . . . . . . . . . . 139

6.1 Models: ScatterNet-inspired Architectures . . . . . . . . . . . . . . . . . . 149
6.2 VGG Convolution Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

iv



List of Tables

4.1 Gabor-likeness of DT-CWPT Filters . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2 Evaluation Metrics on ImageNet . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3 Evaluation Metrics on CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4 Ablation Study: Evaluation Metrics on ImageNet . . . . . . . . . . . . . . 126
5.5 Computational Cost and Memory Footprint . . . . . . . . . . . . . . . . . 130
5.6 Regularization Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . 139

v



List of Symbols

{a . . b} ⊂ N Set of integers ranging from a to b

x ∈ R Scalar

x ∈ RD D-dimensional vector

xd ∈ R d-th element of vector x, for any d ∈ {0 . . D − 1}

X ∈ RN×D Matrix of size N ×D

xn ∈ RD n-th row vector of X, for any n ∈ {0 . . N − 1}

xnd ∈ R Element of coordinates (n, d) in matrix X

Γ : E → R Scalar-valued function

Γ : E → RQ Vector-valued function

Γq : E → R Function computing the q-th scalar output of Γ

argmax(y) ∈ {0 . . Q− 1} Index of the (first) maximal element of y ∈ RQ

∥p∥ · ∈ R+ lp-norm, with p > 0

X : Ω→ E Random variable with outcomes in E

X : Ω→ RD Random vector with outcomes in RD

fX : E → R+ Probability density function of X

f(X | Y=y) : E → R+ Cond. probability density of X given Y = y

P{X = x} ∈ [0, 1] Probability of the event X = x, with x ∈ E

E[X] ∈ E Expected value of X

x⊤y or ⟨x, y⟩ ∈ R Euclidean inner product between vectors x and y

∇V L̃ ∈ RQ×D Gradient of L̃ with respect to V ∈ RQ×D

v ∈ Rd Flipped version of v ∈ Rd

x ∗ v ∈ RD Vector convolution between x ∈ RD and v ∈ Rd

y + b ∈ RD Elementwise vector-scalar sum, y ∈ RD, b ∈ R

x ∈ l2R(Z) or l2C(Z) Real- or complex-valued 1D sequence, with ∥x∥22 <∞

vi



LIST OF SYMBOLS

x[n] ∈ R or C Element of x ∈ l2R(Z) or l2C(Z) at position n ∈ Z

w ∈ l2C(Z) Flipped version of w ∈ l2C(Z)

x ∗ w ∈ l2C(Z) Standard convolution between x and w ∈ l2C(Z)

x̂ ∈ L2
C([−π, π]) Discrete-time Fourier transform of x ∈ l2C(Z)

X ∈ l2R(Z2) or l2C(Z2) Real- or complex-valued 2D sequence, with ∥X∥22 <∞

X[n] ∈ R or C Element of X ∈ l2R(Z2) or l2C(Z2) at position n ∈ Z2

W ∈ l2C(Z2) Flipped version of W ∈ l2C(Z2)

X ∗W ∈ l2C(Z2) Standard convolution between X and W ∈ l2C(Z2)

X ⋆W ∈ l2C(Z2) Cross-correlation between X and W, equal to X ∗W

X ↓ m ∈ l2R(Z2) or l2C(Z2) Subsampling operation on X ∈ l2R(Z2) or l2C(Z2)

X̂ ∈ L2
C([−π, π]2) Discrete-time Fourier transform of X ∈ l2R(Z2)

X ∈
(
l2R(Z2)

)K Multichannel sequence, with K ∈ N \ {0}

Xk ∈ l2R(Z2) k-th channel of X, for any k ∈ {0 . .K − 1}

Γ : l2R(Zd)→ l2R(Zd) Functions defined on d-dimensional sequences

Γ : (l2R(Zd))K → (l2R(Zd))L Functions defined on multichannel sequences

Γl : (l2R(Zd))K → l2R(Zd) Functions computing the l-th output of Γ

F ∈ L2
R(R2) or L2

C(R2) Real or complex 2D function, with ∥F∥2L2 <∞

Φ ∈ L2
R(R2) or L2

C(R2) 2D scaling function

Ψ ∈ L2
R(R2) or L2

C(R2) 2D wavelet

Ψ ∈ L2
C(R2) Flipped version of Ψ ∈ L2

C(R2)

F ∗ Ψ ∈ l2C(Z2) Standard convolution between F and Ψ ∈ L2
C(R2)

F̂ ∈ L2
C(R2) Fourier transform of F ∈ L2

C(R2)

δnp ∈ {0 . . 1} Kronecker delta symbol

1 : Z2 → {0 . . 1} Characteristic function on Z2

∇τ : R2 → R2×2 Jacobian of operator τ : R2 → R2

vii



LIST OF SYMBOLS

viii



Chapter 1

Introduction

It has been over a decade since convolutional neural networks (CNNs) overtook
other machine learning frameworks in large visual recognition tasks, when Krizhevsky
et al. (2017) won the 2012 edition of the ILSVRC challenge on image classification

(Russakovsky et al., 2015). CNNs then became increasingly popular for many computer
vision tasks, including classification (Szegedy et al., 2015; He et al., 2016), object detec-
tion (Girshick, 2015; Ren et al., 2015), generative models (Goodfellow et al., 2014), pose
estimation (Toshev and Szegedy, 2014), etc.

CNNs rely on convolutions and nonlinear pooling operations to transform input images
into high-level feature vectors, which are in turn processed for the task at hand. In the
context of image classification, which is the main focus of this thesis, the feature vectors
are fed into a linear classifier. This type of architecture was popularized by LeCun et al.
(1989) as a subfamily of feedforward neural networks. Their work introduced, through
the use of convolution layers, prior assumptions about the network’s desired behavior.
Specifically, nearby pixels in an image are more strongly correlated, and the same weights
are used for different parts of the image. The purpose of employing such inductive bias is
to avoid having to learn these properties from data. The model therefore becomes more
specialized, making it more efficient in processing images with reduced complexity, while
improving its generalization to unseen data.

In order to achieve high classification accuracy, a convolutional network is expected to
retain discriminative image components while reducing intra-class variability (LeCun et
al., 1998; Bruna and Mallat, 2013). A key property that is often desired in CNNs is their
ability to remain invariant to small input transformations, such as translations, rotations,
distortions, or scaling (Liao and Peng, 2010; Sifre and Mallat, 2013; Bruna and Mallat,
2013; Bietti and Mairal, 2017; Wiatowski and Bölcskei, 2018). Since perfect invariance is
seldom achieved, we shall also use the term stability to refer to their near-invariance be-
havior. This thesis primarily targets translations, also called shifts. Furthermore, we focus
on a configuration that is commonly observed in CNNs when trained on image datasets:
many convolution kernels in the first layer resemble band-pass oriented waveforms, also
known as Gabor-like filters (Yosinski et al., 2014; Rai and Rivas, 2020). This phenomenon
is illustrated in Figure 1.1 in the case of AlexNet: approximately half of the kernels exhibit
oscillating patterns at various frequencies and orientations.
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Figure 1.1. Spatial (left) and Fourier (right) representations of convolution kernels in the first
layer of AlexNet, after training with ImageNet ILSVRC 2012-2017 (Russakovsky et al., 2015).
Each kernel connects the 3 RGB input channels to one of the 64 output channels.

1.1 Themes and Challenges

This thesis is articulated around three main themes: (1) identifying and analyzing the
invariance properties of CNNs; (2) introducing inductive bias in the network structure
through oriented band-pass filters to reduce model complexity; (3) improving the shift
invariance of CNNs to enhance their performance. This section presents a brief overview
of the literature on these topics, and the unsolved questions that we tackled. Then, a
summary of our main contributions is provided in Section 1.2.

1.1.1 Studying Invariance Properties in CNNs

Analyzing the invariance properties of CNNs is critical as it enables to identify their
shortcomings and provides an opportunity to enhance their performance. In recent years,
several works focused on this topic. Most notably, Bruna and Mallat (2013) developed a
family CNN-like architectures, named wavelet scattering networks (ScatterNets), based on
a succession of complex convolutions with wavelet filters followed by nonlinear modulus
pooling. They established stability properties of these models with respect to translations
and distortions. Further studies of this family of CNNs have been conducted by Mallat
(2012), Mallat and Waldspurger (2015), Mallat (2016), Waldspurger (2016), Gama et al.
(2019), Czaja and W. Li (2019), Perlmutter et al. (2020), Zarka et al. (2020), and D. Zou
and Lerman (2020), sometimes using modified versions of the architecture. We refer the
reader to Section 3.5.2 for more details on this topic. As deep learning architectures with
well-established mathematical properties, ScatterNets are sometimes used as explanatory
models for standard, freely-trained networks. However, whether their properties are trans-
ferable to a broader class of models is unclear, because the former rely on complex-valued
convolutions whereas the latter exclusively employ real-valued kernels. Moreover, the
modulus operator is used as an activation and pooling layer in ScatterNets, whereas stan-
dard CNNs implement pointwise nonlinear operators such as ReLU and spatial pooling
layers such as max pooling. This limitation has been pointed out by Tygert et al. (2016)
as an argument in favor of complex-valued CNNs.
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Another work established asymptotic stability properties for a wide range of deep
learning architectures in the continuous domain (Wiatowski and Bölcskei, 2018). How-
ever, these results do not fully extend to the discrete framework due to aliasing effects.
Aliasing occurs when a signal is sampled at a rate that is too low to accurately capture its
high-frequency components. Consequently, subsampled convolutions with band-pass real-
valued filters can introduce aliasing artifacts, which results in instability to translations
(Azulay and Weiss, 2019; R. Zhang, 2019). This limitation can penalize the network’s
accuracy and generalization capability. This kind of filter is very common in CNNs when
trained on image datasets (Yosinski et al., 2014; Rai and Rivas, 2020): many convolution
kernels exhibit Gabor-like patterns with well-defined frequencies and orientations, as il-
lustrated in Figure 1.1. Such filters produce sparse image representations that are able to
discriminate features by scale and orientation, detecting basic geometric shapes such as
edges or textures.

Another line of work is focused on modeling and studying CNNs from the point of view
of convolutional kernel networks (Bietti and Mairal, 2019a,b; Scetbon and Harchaoui,
2020; Bietti, 2022). Kernel representations do not seem to suffer from aliasing effects;
this can be explained by the Gaussian pooling layers that have been employed instead
of max pooling: by discarding high-frequency information, shift invariance is preserved.
Finally, some papers studied stability of CNNs in a broader sense, measured in terms
of Lipschitz continuity (Szegedy et al., 2014; Virmaux and Scaman, 2018; Balan et al.,
2018; D. Zou et al., 2020; Pérez et al., 2020). However, the Lipschitz bounds, which
have been obtained theoretically, are generally several orders of magnitude higher than
empirical results. This discrepancy may be due to the fact that these bounds were obtained
for generic situations and represent overly conservative worst-case scenarios, rather than
typical real-world situations. Furthermore, the specific case of convolutions with band-pass
Gabor-like filters have been overlooked, except for Pérez et al. (2020).

In summary, we identified the following blind spots in the literature, regarding the
topic of studying shift invariance in CNNs.

• The effect of the max pooling operator on network stability under small input shifts
has not been investigated, particularly when used in combination with Gabor-like
convolutions.

• While the shift invariance of CNNs tends to increase with network depth in the
continuous framework, in the discrete case, the presence of subsampled convolutions
with oriented band-pass filters can lead to aliasing artifacts. To our knowledge, the
literature lacks theoretical studies that take these aliasing effects into account.

• Although extensive studies have been conducted on complex-valued convolutions
followed by modulus, a link is missing to extend these results to standard CNNs,
which implement real-valued convolutions and spatial pooling operators.

We have tackled these points in this thesis, as the main focus of our theoretical study,
which is detailed in Chapter 4. More specifically, we established a probabilistic measure of
shift invariance for max pooling outputs. Based on our findings, an approach to enhance
stability was identified, which we experimentally tested in Chapter 5.
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1.1.2 Introducing Gabor Inductive Bias to the Network

By design, CNNs are a subcategory of feedforward neural networks with inductive bias,
leveraging some fundamental properties of images. Namely, it is assumed that (1) two
pixels are more likely to be correlated when they are spatially close to each other (local
connectivity); (2) all image areas should be processed equally by the network (weight
sharing). In contrast, the Gabor-like properties observed in trained CNNs are not explicitly
built into the network architecture but are instead entirely learned from data. As noted by
Yosinski et al. (2014), this is a widespread phenomenon in CNNs and has been observed for
various datasets and training objectives. A visual example is provided in Figure 1.1. This
suggests that Gabor-like convolutions fundamentally act as a generic feature extractor
for images. Therefore, integrating this property directly into the network architecture
could provide an additional inductive bias to CNNs, thereby reducing their complexity by
eliminating the need to learn this property from data.

In this purpose, several recent studies have proposed using Gabor filters in CNNs to
replicate the behavior of freely-trained networks (Sarwar et al., 2017; Alekseev and Bobe,
2019; Pérez et al., 2020). In the last two papers, the parameters characterizing the Gabor
filters are learned by the network. These studies however have certain limitations:

• The discrete Gabor transform requires manual tuning of several parameters such
as subsampling factor, bandwidth, frequencies and rotation angles. While these
parameters can be manually chosen based on prior knowledge or directly learned
from data, it could be interesting to consider a Gabor-like transform having the
same desired properties with fewer degrees of freedom.

• The previous papers did not include a quantitative evaluation of the degree of simi-
larity between Gabor-controlled models and their baselines, particularly in terms of
filter orientation, frequency, bandwidth, and number of Gabor-like filters.

• Whether learned from scratch or directly embedded in the network architecture,
real-valued Gabor-like filters are inherently unstable to translations, as discussed
in Section 1.1.1. However, theoretical considerations regarding complex Gabor-like
filters offer insights into improving shift invariance, a topic not addressed in the
aforementioned papers.

In Chapter 5, we introduce a mathematical twin of existing architectures, offering a
greater control over their behavior. The above issues are directly addressed, paving the
way for improving shift invariance in CNNs, as discussed in the next section.

1.1.3 Improving Shift Invariance in CNNs

Designing models to be nearly shift invariant introduces additional inductive bias to the
architecture. This is advantageous because it avoids the burden of learning this property
from data and improves network efficiency. At an identical level of complexity, a shift-
invariant model can therefore produce better predictions, as detailed below.

Instability to translations has been addressed by several authors in recent years. As
mentioned in Section 1.1.1, subsampled convolutions with oriented band-pass filters, also
known as Gabor-like filters, have been identified as a significant cause of this problem.
This phenomenon is directly related to the Nyquist-Shannon sampling theorem (Shannon,
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1949), which implies that high-frequency signals must be blurred before subsampling, in
order to avoid artifacts in reconstruction. Following this idea, some work (R. Zhang, 2019;
X. Zou et al., 2023) proposed to introduce antialiasing layers based on low-pass filtering,
called blur pooling (BlurPool), within CNNs. This approach simultaneously improved
shift invariance and accuracy of various conventional architectures. However, increasing
stability through low-pass filtering results in a significant loss of information. Although
X. Zou et al. (2023) successfully mitigated this effect, it required additional computational
resources.

Following a different approach, Chaman and Dokmanic (2021) reached perfect shift
invariance without removing aliasing effects, using a strategy called adaptive polyphase
sampling (APS). The idea is to select, for each input image and convolution layer, the
subsampling grid that yields the highest lp-norm in the resulting output, for a given
p ∈ N \ {0}. However, although shift invariance is satisfied for integer-pixel translations,
this may not be the case for fractional-pixel translations requiring interpolation. In ad-
dition, since antialiasing was not performed, the feature maps produced by this method
may include artifacts that were not present in the original signal. This may negatively
impact the network’s performance, compared to previous methods. In fact, combining
this approach with blur pooling yielded the highest classification scores on ResNet trained
with ImageNet, indicating that antialiasing is still beneficial even when perfect shift in-
variance has been achieved. Finally, APS necessitates m2 times more computations and
memory capacity than the conventional subsampling strategy, where m ∈ N \ {0} denotes
the subsampling factor.

The main shortcomings of the previous approaches are summarized as follows.

• Blur pooling improves shift invariance at the cost of a loss of high-frequency infor-
mation (R. Zhang, 2019). This weakness can be alleviated with an adaptive blur
pooling filter, at the expense of additional computational resources and trainable
parameters (X. Zou et al., 2023).

• Perfect shift invariance can be achieved for integer-pixel translations, using APS
(Chaman and Dokmanic, 2021). Yet, aliasing effects may persist, leading to insta-
bilities with respect to fractional-pixel translations and suboptimal accuracy. It also
requires additional computational resources.

• Combining APS with blur-pooling-based antialiasing yields the best performances,
but high-frequency information may still be lost in the process.

It is widely assumed that preserving high-frequency components in the output feature
maps can enhance feature discrimination (Mallat, 2012). It could therefore be beneficial
to develop an antialiasing method that, unlike blur pooling, retains high-frequency infor-
mation without incurring additional computational costs. This is the primary focus of
Chapter 5, in which we introduced complex-valued convolutions with Gabor-like filters
to achieve our goal, based on the theoretical study from Chapter 4. We conducted our
experiments on the mathematical twin briefly introduced in Section 1.1.2, in which the
Gabor-like characteristics are imposed for a predetermined number of convolution kernels,
rather than letting the network learn them from data.
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1.2 Contributions

Chapters 2 and 3 provide a comprehensive background on CNNs and wavelet analysis,
respectively. They discuss the current state of knowledge regarding stability properties
in CNNs, and highlight the novelty of our findings in this context. Chapters 4 and 5 are
devoted to the contributions of this thesis: Chapter 4 is mainly theoretical and tackles the
questions raised in Section 1.1.1, whereas Chapter 5 is an experimental study combining
the themes discussed in Sections 1.1.2 and 1.1.3. In the following, we present a brief
overview of these contributions.

1.2.1 Studying Shift Invariance of Max Pooling Feature Maps

The main goal of Chapter 4 is to establish a probabilistic measure of shift invariance for
max pooling outputs. Specifically, we consider a common scenario in which max pooling
follows a convolution operator with a real-valued Gabor-like filter (see Figure 1.1), which is
unstable to translation, as mentioned in Section 1.1.1 and detailed in Section 3.2.6. In this
work, we show that, under specific conditions, max pooling can improve shift invariance.
To address this topic, we adopt a four-step approach.

(1) Section 4.2 establishes a stability metric for shift invariance of a complex-modulus
operator, conceptually defined by

CMod : CConv→ Sub→ Modulus, (1.1)

where CConv refers to a convolution operator with a complex-valued Gabor-like
kernel, whose real and imaginary parts approximately form a 2D Hilbert transform
pair (Havlicek et al., 1997), and Sub denotes a subsampling operator. The claim
that such an operator is nearly shift invariant is hinted by Kingsbury and Magarey
(1998) but not formally proven.

(2) In Section 4.3, we introduce the operator of interest, real-max-pooling:

RMax : Conv→ Sub→ MaxPool, (1.2)

where Conv refers to a convolution operator with real-valued Gabor-like kernels,
as commonly observed in standard CNNs after training on image datasets such as
ImageNet. We then prove that, under additional conditions on the filter’s frequency
and orientation, CMod and RMax produce similar outputs:

RMax ≈ CMod. (1.3)

This result was hinted by Waldspurger (2015, pp. 190–191) for operators defined on
the continuous domain R2, instead of Z2. However, because max pooling operates
on a discrete grid, there are pathological situations where (1.3) is not satisfied. To
overcome this difficulty, we adopt a probabilistic framework and bound the expected
value of the normalized mean squared error between RMax and CMod outputs. In
particular, we show that the obtained estimation strongly depends on the convolution
filter’s frequency and orientation.
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(3) From this result, we deduce in Section 4.4 a measure of shift invariance for RMax
operators, which benefits from the stability of CMod. Therefore, some filters, de-
pending on their frequency and orientation, are more likely than others to produce
stable image representations.

(4) Finally, Section 4.5 extends the results to operators defined on RGB input images,
such as implemented in conventional CNN architectures.

In Section 4.6, we experimentally validate our theory by considering a determinis-
tic feature extractor based on the dual-tree wavelet packet transform (DT-CWPT). As
discussed in Section 1.2.2, it possesses characteristics comparable to those of trained con-
volution layers in CNNs. We demonstrate a strong correlation between shift invariance of
RMax on the one hand, and similarity between CMod and RMax on the other hand. We
therefore establish a domain of validity for shift invariance of RMax operators.

1.2.2 Improving Shift Invariance with Complex Gabor-like
Convolutions

As explained earlier, Chapter 4 shows that the near-shift invariance property of CMod
can be partially extended to RMax, due to the proximity between the two operators. In
Chapter 5, we build on these findings to design an antialiasing method in which CMod is
used as a stable proxy for RMax. The goal is to increase shift invariance and prediction
accuracy in convolutional neural networks, as discussed in Section 1.1.3. More specifically,
the proposed method consists in replacing the first layers of a CNN:

Conv→ Bias→ Sub→ ReLU→ MaxPool, (1.4)

equivalently written as
RMax→ Bias→ ReLU, (1.5)

by the following combination:

CMod→ Bias→ ReLU, (1.6)

where CMod and RMax satisfy (1.1) and (1.2), respectively (note that, in (1.4), Bias and
ReLU can be moved after MaxPool with no impact on the output). In compliance with
the theoretical study from Chapter 4, the RMax-CMod substitution is only applied to the
channels associated with Gabor-like convolution kernels. This property can be enforced by
introducing inductive bias to the original model, prior to antialiasing (see Section 1.1.2).
Specifically, a predefined number of convolution kernels are guided to adopt Gabor-like
structures, rather than letting the network learn them from data. To achieve this, our
models implement the dual-tree wavelet packet transform (DT-CWPT) (Bayram and I. W.
Selesnick, 2008), an efficient algorithm based on separable filter banks. Unlike the Ga-
bor transform, it only requires tuning one hyperparameter, the decomposition depth, to
obtain a set of filters with predefined frequencies, orientations and bandwidth while also
providing perfect reconstruction properties with limited redundancy. Empirical measure-
ments reveal that the kernels provided by DT-CWPT share many similarities with those
observed in freely-trained CNNs. Throughout the chapter, we refer to this constrained
model as a mathematical twin, because it employs a well-defined mathematical operator
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to mimic the behavior of the freely-trained model. In this context, replacing RMax by
CMod is straightforward, since the complex-valued filters are provided by DT-CWPT. To
assess the resemblance between the freely-trained model and its mathematical twin, we
experimentally measure and compare the properties of their convolution kernels.

Our CMod-based antialiasing method, implemented on AlexNet and ResNet, achieves
superior accuracy on ImageNet and CIFAR-10 classification tasks, compared to prior meth-
ods based on low-pass filtering (R. Zhang, 2019; X. Zou et al., 2023). Arguably, our
approach’s emphasis on retaining high-frequency details contributes to a better balance
between shift invariance and information preservation, resulting in improved performance.
Furthermore, it has a lower computational cost and memory footprint than concurrent
work, making it a promising solution for practical implementation.

1.3 Publications and Software
This thesis is based on the following papers:

• H. Leterme, K. Polisano, V. Perrier, and K. Alahari (2023). “From CNNs to Shift-
Invariant Twin Models Based on Complex Wavelets”. arXiv: 2212.00394, under
review. This paper is an experimental study presenting the antialiasing method
motivated in Section 1.1.3. It is the central theme of Chapter 5.

• H. Leterme, K. Polisano, V. Perrier, and K. Alahari (2022). “On the Shift Invariance
of Max Pooling Feature Maps in Convolutional Neural Networks”. arXiv: 2209.
11740, under review. This paper, for which an expanded version is presented in
Chapter 4, tackles the issues raised in Section 1.1.1.

• H. Leterme, K. Polisano, V. Perrier, and K. Alahari (2021). “Modélisation Parci-
monieuse de CNNs Avec Des Paquets d’Ondelettes Dual-Tree”. In: ORASIS. This
conference paper (in French) presents a first version of the mathematical twin based
on DT-CWPT, addressing the questions discussed in Section 1.1.2. A refined version
of the model is presented as part of Chapter 5.

As a related contribution, we released the following implementation on GitHub:

• H. Leterme (2023). WCNN, a Python Library for Shift-Invariant Twin Models Based
on Complex Wavelets. url: https://github.com/hubert-leterme/wcnn. This
library provides PyTorch pretrained models for the mathematical twins presented in
Chapter 5, in both RMax and CMod (antialiased) versions. It also comes with train-
ing and evaluation scripts, and provides visualization tools to analyze convolution
kernels, characteristic frequencies, bandwidth, etc.
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Chapter 2

Background on Deep Learning for
Classification

This chapter presents an overview of deep learning and its applications to computer
vision, with a focus on convolutional neural networks (CNNs). For the sake of
consistency with the main topic of this thesis, the subject is tackled in the context

of classification; applications of deep learning to other tasks are only briefly mentioned.The
content of this chapter is inspired by Bishop and Mitchell (2014, Chapters 4–7) and LeCun
et al. (2015).

2.1 The Linear Classification Problem

We start our journey by considering a simple classification task. Given an input space RD

with D ∈ N \ {0}, and an integer Q ∈ N, it consists in assigning a label q ∈ {0 . . Q− 1} to
any D-dimensional input vector x ∈ RD, or equivalently, partitioning RD into Q decision
regions {Zq}q∈{0..Q−1}, each of which corresponding to a specific label, or class.

In a supervised setting, we consider a dataset of N ∈ N\{0} labeled examples (X, q),
with X := (x0, . . . , xN−1)⊤ ∈ RN×D and q ∈ {0 . . Q− 1}N , referred to as a training set.
The values qn are called ground truth labels. The training procedure will then attempt to
find an input space partition {Zq}q∈{0..Q−1} which provides a good classification accuracy
on unseen examples. Let (X ′, q′) denote a test set of N ′ ∈ N \ {0} such examples, with
X ′ := (x′

0, . . . , x′
N ′−1)⊤ ∈ RN ′×D and q′ ∈ {0 . . Q− 1}N

′
(in general, N ′ ≪ N). Ideally,

we would like to get x′
n ∈ Zq′

n
for any n ∈ {0 . . N ′ − 1}, which corresponds to a 100%

test accuracy. This, of course, only makes sense if we assume the training and test sets to
share similar structures. For instance, we can assume the training and test examples to
be drawn from the same conditional distribution given each label.

A naive training objective would be to perfectly fit the training examples to their
ground truth labels, i.e., xn ∈ Zqn for any n ∈ {0 . . N − 1}. This is always possible
provided the set of admissible decision regions has sufficient complexity. However, this
does not guarantee that new data will be correctly classified. In the absence of additional
constraints, the training procedure may learn either on features which are irrelevant for
classification, or on random noise. Such a phenomenon, known as overfitting, can be
handled with two possible approaches: (1) imposing additional constraints on the class
of admissible decision regions; (2) penalizing unnecessarily complex solutions by adding a

9
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regularization term to the objective function.
In what follows, we will restrict to the class of linear models for classification. In

this framework, decision regions are separated by affine hyperplanes, referred to as de-
cision boundaries. While this may seem too restrictive, we will see that more complex
decision boundaries can be derived by preprocessing input data through nonlinear feature
extractors.

2.1.1 Problem Formulation

A linear classifier is parameterized by a weight matrix V := (v0, . . . , vQ−1)⊤ ∈ RQ×D

and a bias vector b ∈ RQ. Given an input x ∈ RD, we first compute

y := Λ(V x + b), (2.1)

where Λ : RQ → RQ denotes a (generally nonlinear) activation function. Then, the label
q ∈ {0 . . Q− 1} assigned to x satisfies yq ≥ yq′ for any q′ ̸= q. In other words, q is the
output of

φ : (V , b, x) 7→ argmax Λ(V x + b), (2.2)

where argmax y denotes the index of the maximal element in y. Under specific conditions
on Λ including monotonicity of its components, the decision boundary between any two
regions Zq and Zq′ ⊂ RD is a (D − 1)-dimensional hyperplane defined by

(vq′ − vq)⊤x + (bq′ − bq) = 0, (2.3)

where vq ∈ RD and bq ∈ R respectively denote the q-th row vector of V and the q-
th element of b. For this reason, φ is called a generalized linear model (Nelder and
Wedderburn, 1972).

Let (X, q) denote a training set. We consider a class of objective functions defined by

L : (V , b, x, q) 7→ E
(
V x + b, q

)
+ λR(V ), (2.4)

where E : RQ × {0 . . Q− 1} → R+ denotes an error function, λ > 0 denotes a regular-
ization hyperparameter, and R : RQ×D → R+ denotes a regularization function. For a
suitable choice of λ, the regularization term λR(V ) is intended to improve the classifier’s
generalization capabilities, for instance by reducing overfitting.

Then, evaluating the objective function for each training example and averaging over
the whole dataset yields the training loss:

L̃ : (V , b, X, q) 7→ 1
N

N−1∑
n=0
L(V , b, xn, qn). (2.5)

The training procedure consists in minimizing L̃(V , b, X, q) with respect to the weight
V and bias b. In Section 2.1.3, we present and discuss several such objective functions.

Remark 2.1. In machine learning literature, the weight matrix is often denoted by W .
In this thesis however, this denomination is reserved for complex-valued weight matrices.

10
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Remark 2.2. In many cases, the problem will be more constrained, and V and b will
not be fully trainable. Instead, we will consider parameters v and b from which V and b
can be recovered:

V := Ξ(v); b := Π(b), (2.6)

for certain linear functions Ξ and Π to be defined. The nature of v and b—a one-
dimensional vector, a convolution kernel, a scalar—will be clarified when necessary. Then,
we derive from (2.2) and (2.4), respectively, a generalized linear model and an objective
function parameterized by v and b:

φ0 : (v, b, x) 7→ φ
(
Ξ(v), Π(b), x

)
; (2.7)

L0 : (v, b, x, q) 7→ L
(
Ξ(v), Π(b), x, q

)
. (2.8)

In this context, the training procedure consists in minimizing

L̃0(v, b, X, q) := L̃
(
Ξ(v), Π(b), X, q

)
(2.9)

= 1
N

N−1∑
n=0
L0(v, b, xn, qn) (2.10)

with respect to v and b.

2.1.2 The Two-Class Problem

A particular case of linear model is when Q = 2. Following Remark 2.2, we consider a
simpler setting parameterized by a weight vector v ∈ RD and bias scalar value b ∈ R. The
linear mappings introduced in (2.6) are then defined by

Ξ : v 7→

 v⊤

−v⊤

 ; Π : b 7→

 b

−b

 . (2.11)

Besides, the activation Λ(y) is obtained by applying a one-dimensional activation function
Λ0 : R→ R to each member of y. Then, the generalized linear model introduced in (2.7)
becomes:

φ0(v, b, x) =
{

0 if Λ0(v⊤x + b) ≥ Λ0(−v⊤x− b);
1 otherwise.

(2.12)

For training, the error function introduced in (2.4) is defined by

E : (y, q) 7→ E0(y1, q), (2.13)

for some one-dimensional error function E0 : (R, {0 . . Q− 1}) 7→ R+ to be specified. The
objective function L0 as introduced in (2.8) then becomes:

L0(v, b, x, q) = E0
(
v⊤x + b, q

)
+ λR0(v), (2.14)

where we have defined R0 : v 7→ R(Ξ(v)).

11
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2.1.3 Examples of Linear Classifiers

We now present some typical examples of classifiers and discuss their properties. By de-
fault, they apply to the general multilabel setting. However, some of them are specifically
designed for the two-class problem. Even though extensions to Q > 2 are generally possi-
ble, for example by adopting one-versus-one or one-versus-rest strategies, they come with
fundamental limitations such as ambiguous decision regions or imbalanced training sets
(Bishop and Mitchell, 2014, pp. 338-339).

A Naive Classifier based on Least Squares. By analogy with linear regression, it
could be tempting to use an objective function based on the sum-of-squares error function.
In this setting, the activation function Λ introduced in (2.4) is the identity, and the error
function E is defined, for any y ∈ RQ and any q ∈ {0 . . Q− 1}, by

E(y, q) :=
∥∥∥y − ỹq

∥∥∥2

2
, (2.15)

where ỹq ∈ {0, 1}Q is a binary target vector, defined by ỹqq′ := δqq′ .
This approach is convenient since it provides a closed-form solution for the optimal

parameters V and b. However, it suffers from two major drawbacks: (1) lack of robustness
to outliers; (2) failure to correctly classify training examples when Q > 2, even when the
classes are well separated. The second point comes from the implicit assumption that the
target vector ỹq is drawn from a Gaussian conditional distribution given x (Bishop and
Mitchell, 2014, p.186), which is reasonable for linear regression but not for classification.

The Perceptron. The perceptron algorithm (Rosenblatt, 1958) plays an important
role in the history of machine learning since it is one the first to be intended for practical
implementation on a physical machine. It is designed as a simplified model of a biological
neural network, such as described by McCulloch and Pitts (1943).

The perceptron is fundamentally a two-class model; generalizations to Q > 2 are not
straightforward. In this framework, the one-dimensional activation function Λ0 such as
introduced in Section 2.1.2 is a step function:

Λ0 : y 7→
{

+1 if y ≥ 0;
−1 if y < 0,

(2.16)

whereas the one-dimensional error function E0 is defined as

E0 : (y, q) 7→ max(−y q̌, 0), where q̌ :=
{

+1 if q = 0;
−1 if q = 1.

(2.17)

Therefore, E0(v⊤x + b, q) > 0 for misclassified examples only, except those lying on the
decision boundary. Besides, the perceptron does not use regularization; thus λ = 0. Then,
the training loss L̃0 defined in (2.14) is minimized with respect to v and b, following the
stochastic gradient descent procedure (see Section 2.2.2).

An important theoretical result is the perceptron convergence theorem. It states that, if
the training set is linearly separable, then L̃0(v, b, x, q) will reach 0 after a finite number
of steps. However, in the opposite case, the algorithm will never converge, which restricts
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its practical utility to strictly linearly separable training sets. This fundamental limita-
tion was pointed out in a book by Minsky and Papert (1988), which was first published in
1969 and resulted in the emerging machine learning community looking away from neural
networks until the mid-eighties. Even if the training set is linearly separable, the number
of steps before reaching convergence can be important, which makes it difficult to dis-
tinguish between a nonseparable dataset and a dataset which is simply slow to converge.
Another major issue is about the number of exact solutions. Depending on the choice of
parameter initialization as well as the order in which datapoints are fed into the network,
the perceptron algorithm may converge to many different valid states. However, not all of
them perform equally well on unseen data.

Support Vector Machines. Support vector machines (SVMs) (Boser et al., 1992;
Cortes and Vapnik, 1995) have been very popular in the past decades for solving clas-
sification tasks, including face detection (Osuna et al., 1997), but also in other contexts
such as regression (Smola and Schölkopf, 2004). Similar to the perceptron, they are specif-
ically designed for the two-class problem.

The main idea is to find a decision boundary maximizing the margin. In the linearly-
separable setting, the margin is defined as the Euclidean distance between the decision
boundary and the closest datapoints from both classes. In a more general case, some
datapoints are allowed to lie inside the margin or to be misclassified. The penalty for
violating this constraint is proportional to the distance from those misplaced datapoints to
the margin boundary. The datapoints lying on or inside the margin, or being misclassified,
are referred to as support vectors.

The SVM model can be expressed in the framework presented in Section 2.1.2. Similar
to the perceptron, the activation function Λ0 is chosen to be the step function as defined
in (2.16). The error function E0 is the hinge error function:

E0 : (y, q) 7→ max(1− y q̌, 0), (2.18)

where the target value q̌ has been introduced in (2.17). In addition, regularization is
performed using the squared l2-norm:

R0(v) := ∥v∥22 . (2.19)

The tradeoff between the margin size and tolerance with respect to faulty datapoints is
controlled by a regularization hyperparameter λ such as introduced in (2.14).

The Logistic Regression. Since the step function is used for activation in the two
previous classifiers, predictions are made in a binary fashion. With logistic regression, we
shall see that a linear classifier can also provide probabilistic outputs.

In its two-class formulation, logistic regression uses the logistic sigmoid function as an
activation function, which outputs confidence values in [0, 1]:

Λ0 : y 7→ 1
1 + e−y

. (2.20)

While this function—and a closely-related cousin named the probit—was originally intro-
duced as a regression model for population growth (Pearl and Reed, 1920) and bioassay
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(Berkson, 1944), its theoretical and practical interest for classification was unraveled in
the seventies (McFadden, 1973; McKelvey and Zavoina, 1975). More details on the history
of logistic regression can be found in a review by Cramer (2002).

We now examine the general multiclass problem and explain that, under specific as-
sumptions on the input data distribution, the output of logistic regression can be inter-
preted as a probability distribution over the set of labels. Let us assume that the training
examples (xn, qn) are drawn from N independent and identically distributed (i.i.d.) ran-
dom variables (Xn, Qn) ∼ (X, Q). Moreover, we assume that the conditional distributions
of X given Q = q for any class q ∈ {0 . . Q− 1} constitute an exponential family of dis-
tributions (Bishop and Mitchell, 2014, p. 203), e.g., a family of multivariate Gaussian
distributions with a shared covariance matrix Σ.

One of the main motivations for using logistic regression lies in the following result
concerning posterior probabilities. Under the exponential family hypothesis, there exists
V ∈ RQ×D and b ∈ RQ such that, for any x ∈ RD and q ∈ {0 . . Q− 1},

P {Q = q | X = x} = Λq(V x + b), (2.21)

where Λq : RQ → [0, 1] is defined by

Λq : y 7→ exp(yq)∑Q−1
q′=0 exp(yq′)

(2.22)

denotes the normalized exponential, which is a multiclass generalization of the logistic
sigmoid function.

Expression (2.22) defines the q-th component of a softmax function Λ : RQ → [0, 1]Q,
which can be used as a nonlinear activation function in the general framework introduced in
Section 2.1.1. According to (2.21), the output can be interpreted as a posterior probability
distribution over the set of labels. The linear model (2.2) then assigns, for any input
x ∈ RD, the most probable label q ∈ {0 . . Q− 1}, conditionally to X = x.

The model should accurately reflect the empirical distribution of the training data.
The training procedure therefore consists in maximizing the joint posterior probability
P {Q0 = q0, . . . , QN−1 = qN−1 | X0 = x0, . . . , XN−1 = xN−1} with respect to V and b.
Under the i.i.d. hypothesis, this is equivalent to minimizing the average negative log-
likelihood, also called cross-entropy loss, over the training examples (x, q). In this context,
the error function E , introduced in (2.4), is defined by

E(y, q) := − lnΛq(y), with y := V x + b. (2.23)

As seen above, performing logistic regression is justified if the input data are drawn
from an exponential family of distributions. Moreover, the softmax output provides a
probabilistic estimation of the prediction accuracy. Logistic regression is widely used as
the final classifier in modern neural network architectures, introduced in Section 2.3.

2.1.4 Beyond Linear Models

The above models are linear classifiers, which means that the decision boundaries are
constrained to be affine hyperplanes. Although SVMs and logistic regression do not require
strict linear separability, such decision boundaries often do not reflect the complexity of
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underlying data structures. To get an intuition for this, consider a classification task for
animal species (LeCun et al., 2015). In the input space, also called pixel space, two images
of the same animal in two different poses or background environment may be very far
away from each other. Conversely, images of two different yet visually similar animals
may be close to each other in the pixel space. In this context, a linear decision boundary
may fail to discriminate the latter two images while identifying the former as belonging
to the same species.

A common way to overcome this limitation is to preprocess input data through a
nonlinear operator Γ : RD → RD′ , and apply the linear classifier on its output. Equation
(2.1) is then replaced by

y := Λ
(
V Γ (x) + b

)
, (2.24)

with V ∈ RQ×D′ . Such an operator is called a feature extractor, and the corresponding
output space RD′ is referred to as a feature space. Whereas the decision boundaries remain
linear in the feature space, they may correspond to nonlinear decision boundaries in the
input space.

Designing a good feature extractor is far from being straightforward. This task often
requires high domain expertise and thus prior knowledge on the underlying data structure.
In this section, we review several popular approaches for feature extraction. They fall into
three different categories: (1) generic, nonparametric feature extractors (kernel methods);
(2) specific, handcrafted feature extractors (local descriptors, wavelet scattering trans-
form); (3) generic feature extractors with trainable parameters (multilayer perceptron).

Kernel Methods. This concept was first introduced and applied to the perceptron
by Aizerman (1964), and later rediscovered with the emergence of SVMs (Boser et al.
1992). Kernel methods use generic feature extractors, for which the feature space RD′

can be of very high—or even infinite—dimension, thus allowing very complex feature
representations. This is made computationally tractable by taking advantage of the kernel
trick (Aizerman, 1964). In the context of SVMs, the inner product v⊤Γ (x), which is
required in (2.12) and (2.14), can be computed by performing Nsupp ≪ N evaluations on
the subset of support vectors {xn}n∈S , with S ⊂ {0 . . N − 1}. More precisely, there exists
a vector of Lagrange multipliers, denoted by a ∈ RN

+ , such that, for any x ∈ RD,

v⊤Γ (x) =
∑
n∈S

anq̌nKΓ (xn, x) , (2.25)

where q̌ ∈ {−1, +1}N denotes the vector of target values such as introduced in (2.17).
Moreover, in the above expression we have introduced

KΓ : (x, x′) 7→ Γ (x)⊤Γ (x′), (2.26)

which is referred to as a kernel function. Therefore, v and Γ (x) do not need to be explicitly
computed. It turns out that, for any positive semidefinite kernel function K : RD ×RD →
R, the existence of Γ such that K = KΓ as defined in (2.26) is guaranteed (Bishop and
Mitchell, 2014, p.295). Therefore, an explicit formulation of Γ can be avoided.

A popular example is the Gaussian kernel, defined by

K : (x, x′) 7→ exp
(
−∥x− x′∥22

2σ2

)
, (2.27)
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for which the implicit feature extractor Γ maps any input vector to an infinite-dimensional
space.

Local Descriptors. An important family of hand-crafted feature extractors are the local
descriptors. Their primary purpose is to extract a set of local features from images that
can be used to perform matching between several inputs. For instance, two pictures of the
same building seen from various angles and weather conditions are expected to produce
nearly identical sets of local features.

One of the first feature descriptors of this kind was developed by Harris and Stephens
(1988). Despite its success, the Harris detector is very unstable with respect to changes
of scale, which makes it poorly suited for matching, and many other vision tasks includ-
ing classification. This weakness led to the development of scale- and rotation-invariant
descriptors which are also robust to distortions, cluttered environments or changes of lu-
minosity. A popular example is the scale-invariant feature transform (SIFT) descriptor
(Lowe, 2004), which gave birth to several extensions including PCA-SIFT (Ke and Suk-
thankar, 2004), and gradient location and orientation histogram (GLOH) (Mikolajczyk
and Schmid, 2005).

The Wavelet Scattering Transform. A recent example of specific, handcrafted fea-
ture extractor is the wavelet scattering transform, introduced by Mallat (2012). This
nonlinear transform is designed to produce near-translation-invariant signal representa-
tions which are stable to deformations and preserve high-frequency information. The key
idea is that two slightly shifted or deformed signals are generally expected to be of the
same nature, and should therefore be assigned the same label. On the other hand, this
transform is designed to extract discriminative features such as directional structures at
various scales.

The wavelet scattering transform gave birth to a whole new family of classifiers called
wavelet scattering networks (ScatterNets) (Bruna and Mallat, 2013). They achieved good
performance on textures or small image datasets such as handwritten digits, as well as
tasks with limited labeled data. Furthermore, they brought some theoretical insights to
the field of deep learning, due to their resemblance with standard convolutional neural
networks (see Section 2.3).

A detailed description of the wavelet scattering transform and an overview on its
various applications are provided in Section 3.4.

Multilayer Perceptrons. A powerful alternative to the above approaches is to design
parametric feature extractors with a generic learning procedure. This is where deep learn-
ing comes into play. The next section focuses on an important class of models, called
multilayer perceptrons or feedforward neural networks, containing such parametric feature
extractors. In each layer, the network captures more and more discriminative features
while becoming less sensitive to intra-class variations. Seen from another angle, the in-
put space is progressively distorted until becoming suitable for linear decision boundaries.
As we will see, convolutional neural networks constitute a subclass of feedforward neural
networks which are well suited for image classification.
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2.2 Multilayer Perceptrons

Multilayer perceptrons (MLPs) were popularized by Rumelhart et al. (1986). Although
the concept of multilayer networks was not new at the time, the authors contributed to
design an efficient training procedure called gradient backpropagation. Consequently, such
models became well suited for practical implementations.

This section provides a detailed description of MLPs as well as the related training
procedure, based on stochastic gradient descent and backpropagation. The general frame-
work introduced in Section 2.1 holds, except that (2.1) is replaced by (2.24), to account
for the nonlinear feature extractor Γ .

2.2.1 Parametric Feature Extractor

The feature extractor Γ is built as a succession of operators following the prototype (2.24).
We consider P ∈ N as the number of hidden layers. Then for any p ∈ {0 . . P − 1}, let
Dp ∈ N \ {0} denote the number of input features in the (p + 1)-th layer, and D′ := DP

denote the size of output vectors. Note that D := D0 represents the size of input vectors
x ∈ RD. Then, we define

Γ := Γ (P ), with Γ : RD → RD′
, (2.28)

in a recursive manner. First, Γ (0) : RD → RD is defined as the identity. Then, for any
p ∈ {0 . . P − 1}, Γ (p+1) : RD → RDp+1 satisfies

Γ (p+1) : x 7→ Λ(p)(V (p)Γ (p)(x) + b(p)), (2.29)

where Λ(p) : RDp+1 → RDp+1 denotes a nonlinear activation function. Moreover, V (p) ∈
RDp+1×Dp and b(p) ∈ RDp+1 denote a trainable weight matrix and bias vector, respectively.

Note that the name “multilayer perceptron” should be seen as a tribute to Rosenblatt’s
perceptron rather than a proper description of the model. In fact, Λ(p) is generally chosen
to be a sigmoid logistic function (Rumelhart et al., 1986), a scaled hyperbolic tangent
(LeCun et al., 1989), or more recently, a rectified linear unit (ReLU) (Glorot et al., 2011).
Besides, the final classifier is generally chosen to be a logistic regression model, thus
providing a probabilistic estimation for the assigned labels.

2.2.2 Training Procedure

During training, the parameters of the feature extractor Γ are updated simultaneously
with those of the final classifier. For the sake of consistency, we therefore denote by

V (P ) := V and b(P ) := b (2.30)

the weight tensor and bias vector in the final classifier. Then, the objective function
introduced in (2.4) takes additional arguments:

L :
(
(V (p), b(p))p∈{0..P }, x, q

)
7→

E
(
V (P )Λ(P −1)

(
V (P −1)Λ(P −2)(. . . ) + b(P −1)

)
+ b(P ), q

)
, (2.31)
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and the corresponding training loss L̃, introduced in (2.5), is modified accordingly. Note
that the regularization term is discarded for the sake of simplicity, even though regular-
ization is possible in MLPs.

The training procedure is generally performed using stochastic gradient descent (SGD).
At each step, the algorithm randomly selects a subset (Xb, qb), called minibatch, of the
training set (X, q). Then, using backpropagation, the gradient of the training loss

L̃b := L̃
(
(V (p), b(p))p∈{0..P }, Xb, qb

)
(2.32)

is recursively computed with respect to V (p) and b(p), for each p ∈ {0 . . P}. Finally, the
parameters are updated using the following rule:

V (p) ← V (p) − α∇V (p)L̃b; b(p) ← b(p) − α∇b(p)L̃b, (2.33)

where α > 0 denotes a learning rate.
Despite promising beginnings, multilayer neural networks became overshadowed by

other machine learning approaches in the late 1990s and early 2000s, in particular by SVMs
and kernel methods. This is partly because stochastic gradient descent was thought to be
fatally stuck at local minima and therefore produce suboptimal solutions. However, one
subclass of MLPs—namely, convolutional neural networks (CNNs)—continued to blossom
in the computer vision field, even though its most outstanding successes only came out by
the 2010s.

2.3 Convolutional Neural Networks
According to Scherer et al. (2010), CNNs are based on the concepts of simple and complex
cells from the mammal visual cortex (Hubel and Wiesel, 1962). A notable precursor is the
neocognitron, developed by Fukushima and Miyake (1982). However, actual models trained
by backpropagation emerged subsequently to Rumelhart et al. (1986). The first one- and
two-dimensional applications were developed simultaneously, respectively by Waibel et al.
(1989) for phonemes and word recognition, and LeCun et al. (1989) in the context of
handwritten digits recognition.

CNNs synthesize three main ideas: local connections, weight sharing and pooling. The
two first ones arise from the properties of input images. Features are more likely to be
correlated if they are spatially close to each other. Besides, objects or shapes are generally
not bound to a specific location. Therefore, the same weights can be repeated across
the spatial extent of input images. This allows reducing the number of freely-trained
parameters by a large amount (LeCun et al., 1989). Local connections and weight sharing
are implemented in convolution layers, which are described in Section 2.3.1. Additionally,
pooling is another key concept in CNNs, which is developed in Section 2.3.2.

Following this approach, subsequent research led to develop CNNs for face detection
and localization (Vaillant et al., 1994), face recognition (Lawrence et al., 1997), docu-
ment reading (LeCun et al., 1998), video segmentation (Ning et al., 2005), and more
recently, pose estimation (Tompson et al., 2015). However, a major breakthrough came
with Krizhevsky et al. (2017), who won the 2012 edition of the ILSVRC challenge on
ImageNet. This was the first time a CNN architecture reached competitive performance
in a classification task on large image datasets. More details on this are provided in
Section 2.3.3.
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2.3.1 Convolution Layers

Input data usually take the form of multiple arrays (multichannel inputs), either 1D (e.g.,
audio signals or language sequences), 2D (e.g., images or audio spectrograms) or 3D (e.g.,
videos or volumetric images). In this section, we describe a typical convolution layer
for 1D signals and show that it fits in the MLP framework as described in Section 2.2.
Generalization to higher dimensions is quite straightforward.

A one-dimensional convolution layer is parameterized by a convolution kernel v ∈ Rd

for a given d ∈ N \ {0} (d≪ D) and a bias b ∈ R. Then, we consider

Ξ : Rd → RD×D and Π : R→ RD (2.34)

as in Remark 2.2 (Section 2.1.1). They are defined by

Ξ : v 7→



v⌊d/2⌋ . . . vd−1 0 0 . . . 0

v⌊d/2⌋−1 . . . vd−2 vd−1 0 . . . 0
...

...
...

0 . . . 0 v0 . . . vd−1 0 . . . 0
...

...
...

0 . . . 0 v0 v1 . . . v⌊d/2⌋+1

0 . . . 0 0 v0 . . . v⌊d/2⌋



(2.35)

and
Π : b 7→ (b, . . . , b)⊤. (2.36)

Then, for any input x ∈ RD, the convolution layer, followed by a nonlinear activation
function Λ : RD → RD, produces an output y ∈ RD satisfying (2.1):

y := Λ(V x + b), (2.37)

with
V := Ξ(v) ∈ RD×D and b := Π(b) ∈ RD. (2.38)

V is called a Toeplitz matrix. The notions of local connection and weight sharing emerge
from this structure.

We denote by v ∈ Rd the “flipped vector”, defined by vi := vd−1−i. The matrix-vector
product V x can then be written in the form of a convolution product:

V x = x ∗ v, (2.39)

with

(x ∗ v)j :=
d−1∑
i=0

xi vi−j+⌊d/2⌋ ∀j ∈ {0 . . D − 1} , (2.40)

where we have defined vi′ := 0 if i′ /∈ {0 . . d− 1}.
If several pairs of convolution layer and activation function are stacked on top of each

other, we obtain a multilayer feature extractor satisfying (2.28) and (2.29). The final
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classifier remains unchanged, i.e., all the belements of V (P ) are freely trained. The last
layer is therefore qualified as fully connected.

In the multilayer setting, the above quantities are superscripted by p, for any hidden
layer p ∈ {0 . . P − 1}. Then, the partial feature extractor (2.29) becomes

Γ (p+1) : x 7→ Λ(p)
(
Γ (p)(x) ∗ v(p) + b(p)

)
, (2.41)

where the vector-scalar sum y′ := y + b is defined by y′
i := yi + b for any i.

Remark 2.3. To avoid the cumbersome definition of convolutions between fixed-length
vectors (2.40), we cast x and v into finitely-supported sequences, denoted by roman, non-
bold letters x and v ∈ l2R(Z), where l2R(Z) denotes the space of real-valued square-summable
sequences. Indexing is made between square brackets. The support of v is chosen to be
centered around 0, such that v[n] := v[−n] for any n ∈ Z. Then, x ∗ v can be retrieved
from the standard convolution between x and v, defined by

(x ∗ v)[n] :=
∑
p∈Z

x[p] v[p− n] ∀n ∈ Z. (2.42)

Then, (2.41) can be rewritten

Γ (p+1) : x 7→ Λ(p)
(
Γ (p)(x) ∗ v(p) + b(p)

)
, (2.43)

where Γ (p) : l2R(Z) → l2R(Z) and Λ(p) : l2R(Z) → l2R(Z) are defined on a space of infinite
sequences, rather than fixed-length vectors as before.

Two-Dimensional CNNs. In computer vision, input datapoints and convolution ker-
nels are 2D sequences, denoted by roman, non-bold capital letters: X, V ∈ l2R(Z2). Inputs
X and their corresponding outputs

(X ∗V)[n] :=
∑

p∈Z2

X[p] V[p− n] ∀n ∈ Z2, (2.44)

are referred to as feature maps.

Subsampling. In CNNs, convolutions are sometimes performed with subsampling, also
called stride. Considering X′ := X ∗V ∈ l2C(Z2) and a subsampling factor m ∈ N \ {0}, we
write (X′ ↓ m) ∈ l2C(Z2) such that, for any n ∈ Z2,

(X′ ↓ m)[n] := X′[mn]. (2.45)

The support of the output feature maps is then roughly divided by m along each axis. In
(2.35), subsampling is equivalent to keep one row out of m and discard all others.

Multichannel Convolution Layers. In many applications, convolution layers take
multiple feature maps as input and output:

X ∈
(
l2R(Z2)

)Kinp and X′ ∈
(
l2R(Z2)

)Kout , (2.46)
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where Kinp and Kout ∈ N\{0} denote, for a specific layer, the number of input and output
channels, respectively. Such objects are referred to as multichannel tensors. Besides, the
layer is parameterized by a multichannel weight tensor and a bias vector

V ∈
(
l2R(Z2)

)Kout×Kinp and b ∈ RKout (2.47)

such that, for any output channel l ∈ {0 . .Kout − 1},

X′
l :=

K−1∑
k=0

(Xk ∗Vlk) ↓ m+ bl, (2.48)

where we have introduced a bias notation, defined such that (Y + b)[n] = Y[n] + b for any
n ∈ Z2.

For any p ∈ {0 . . P − 1}, let Kp ∈ N \ {0} denote the number of input channels in the
(p+1)-th layer, and L := KP denote the number of output channels in the last layer. Note
that K := K0 denotes the number of input channels in the initial layer, e.g., K = 3 for
RGB input images. Each layer is associated with a weight tensor V(p) and a bias vector
b(p), satisfying (2.47) with Kinp ← Kp and Kout ← Kp+1. Then, the feature extractor
mapping any input X ∈

(
l2R(Z2)

)K to the output of the last convolution layer, denoted by

Γ (P ) :
(
l2R(Z2)

)K → (
l2R(Z2)

)L
, (2.49)

is defined, like in Section 2.2.1, in a recursive manner. First, we define Γ (0) as the identity.
Then, for any p ∈ {0 . . P − 1}, the feature extractor Γ (p+1) :

(
l2R(Z2)

)K → (
l2R(Z2)

)Kp+1

related to the p+ 1 first layers is defined, for any channel l ∈ {0 . .Kp+1 − 1}, by

Γ
(p+1)
l : X 7→ Λ(p)

Kp−1∑
k=0

(
Γ

(p)
k (X) ∗V(p)

l

)
↓ mp + b

(p)
l

 , (2.50)

where Γ (p)
k :

(
l2R(Z2)

)K → l2R(Z2) denotes the k-th output component of Γ (p), and Λ(p) :
l2R(Z2) → l2R(Z2) denotes a nonlinear activation function. Expression (2.50) is a two-
dimensional, multichannel extension of (2.43).

Before the final classifier, an average value is computed over each feature map. We
denote by

µ :
(
l2R(Z2)

)L → RL (2.51)

the corresponding operator, referred to as adaptive average pooling. We then get a variation
of (2.28) for the global feature extractor:

Γ := µ ◦ Γ (P ), with Γ :
(
l2R(Z2)

)K → RL. (2.52)

Finally, the feature vector Γ (X) serves as input for a final classifier, similar to (2.24):

y := Λ
(
V Γ (X) + b

)
, (2.53)

where V ∈ RQ×L and b ∈ RQ are the trainable parameters of the final fully-connected
layer, and Λ is the softmax activation function such as defined in (2.22).
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2.3.2 Pooling Layers

Another key component of CNNs is pooling layers, which are usually placed between
convolution layers, after the activation function. Their role is to aggregate information
spread across a group of neighboring pixels into one single feature. Pooling layers therefore
reduce dimensionality while decreasing the variability of signal representations.

A pooling layer operates on patches that are shifted along both dimensions by more
than one pixel; it is therefore a downsampling operator. More formally, it is represented
as a function Ω : l2R(Z)→ l2R(Z2) satisfying

Ω(X) := Ω0(X) ↓ m′, (2.54)

where Ω0 depends on the type of pooling, and m′ denotes the subsampling factor (generally
equal to 2). Early networks such as LeNet (LeCun et al., 1989) typically used average
pooling, computed over a sliding grid of size (2q + 1) × (2q + 1) for a given q ∈ N \ {0}
(generally equal to 1). Specifically, for any n ∈ Z2,

Ωavg
0 (X)[n] := 1

(2q + 1)2

∑
∥p∥∞≤q

X[n + p]. (2.55)

In the rest of the thesis, we refer to q as the grid’s half-size. However, a nonlinear function,
which became known as max pooling, was proposed by Yamaguchi et al. (1990) in the
context of speech recognition, and by Riesenhuber and Poggio (1999) as a model for the
cortex visual processing system. For any n ∈ Z2,

Ωmax
0 (X)[n] := max

∥p∥∞≤q
X[n + p]. (2.56)

Max pooling has been widely adopted in CNN architectures since, as suggested by empir-
ical evidence (Scherer et al., 2010), it leads to improved performance over linear pooling
operators. Then, for any p ∈ {0 . . P − 1}, (2.50) becomes

Γ
(p+1)
l : X 7→

(
Ω ◦ Λ(p))Kp−1∑

k=0

(
Γ

(p)
k (X) ∗V(p)

l

)
↓ mp + b

(p)
l

 . (2.57)

2.3.3 Advances in CNNs for Image Classification

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was organized an-
nually from 2010 to 2017, and served as a benchmark for advances in large scale object
classification and detection (Russakovsky et al., 2015). The first two editions were domi-
nated by SVMs, used in combination with feature extractors such as SIFT or the Fisher
kernel, as well as dimensionality reduction and data compression techniques (Y. Lin et al.,
2011; Perronnin et al., 2010; Sanchez and Perronnin, 2011). The 2012 edition however
was a turning point in the history of image classification, since CNNs came into play and
won the challenge by a comfortable margin.

AlexNet: a Breakthrough in Computer Vision. To train their model, widely
known as AlexNet, the laureates (Krizhevsky et al., 2017) took advantage of a paral-
lel GPU implementation and introduced dropout layers before the final classifier. During
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the training phase, each element of the input feature vector Γ (X), such as used in (2.53), is
set to zero with a 50%-probability. Dropout serves as a regularization technique, therefore
improving the network’s generalization performances, at the cost of a doubled training
time.

In the subsequent years, CNNs completely took over the competition. Zeiler and
Fergus (2014) won the 2013 edition, using a visualization technique as a diagnosis tool to
optimize Krizhevsky’s architecture.

Inception Modules and 1×1 Convolution. The winners of the 2014 edition (Szegedy
et al., 2015) beat the state of the art at that time, with a model named GoogLeNet.1 It was
built upon a stack of inception modules, which contain parallel convolutions layers (2.48)
with various kernel sizes, in a similar way as multiresolution transforms (see Section 3.2).
Moreover, dimensionality reduction is performed using convolution layers with kernels of
size 1× 1 (M. Lin et al., 2014). For such a layer, (2.50) becomes

Γ
(p+1)
l : X 7→ Λ(p)

Kp−1∑
k=0

(
a

(p)
lk Γ

(p)
k (X)

)
+ b

(p)
l

 , (2.58)

with trainable weights A(p) ∈ RKp+1×Kp . Therefore, a 1 × 1 convolution layer performs
linear combinations of feature maps with trainable weights. This trick allowed to increase
the network width and depth at a reasonable cost. As a matter of fact, the number of
trainable parameters was 12 times less than in AlexNet.

The same year, the VGG team, winner of the single-object localization track, ranked
second in object classification with a very deep model using small 3×3 convolution kernels
(Simonyan and Zisserman, 2015).

Residual Networks. Another major innovation came with the 2015 edition of ILSVRC.
He et al. (2016) proposed a class of models called residual networks, also known as ResNets.
This architecture introduces skip connections between groups of convolution layers. In its
simplest form, a skip connection modifies the feature extractor at a given layer p, described
in (2.50), as follows. We consider a situation where Kp = Kp+1. We also assume that
mp = 1 (subsampling factor). We then get, for any l ∈ {0 . .Kp − 1},

Γ
(p+1)
l : X 7→ Γ

(p)
l (X) + Λ(p)

Kp−1∑
k=0

(
Γ

(p)
k (X) ∗V(p)

l

)
↓ mp + b

(p)
l

 . (2.59)

We can see that, if the convolution kernels and bias are set to 0, we get Γ (p+1)(X) =
Γ (p)(X), and the (p+1)-th layer is a simple identity. For this reason, the features extracted
at this layer (right of the + sign) are qualified as residual. This approach allowed the
authors to build very deep models with no drop in accuracy, as often observed in non-
residual architectures.

Besides, ResNets perform a linear transform called batch normalization (Ioffe and
Szegedy, 2015) after each convolution layer. This step ensures that intermediate feature
maps have approximately zero mean and unit variance. Consequently, the network is less

1The name derives from LeCun’s original model, which is usually referred to as LeNet.
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Figure 2.1. Top-5 error rates on the ILSVRC classification challenge. From Langlotz et al. (2019).

sensitive to parameter initialization, resulting in a faster training convergence. More on
this is provided in Section 5.4.5.

The last two editions of ILSVRC awarded improved ResNet-like models; respectively,
ResNeXt (S. Xie et al., 2017) and SENet (Hu et al., 2018). The evolution of the top-5 error
rates from 2010 to 2017 is displayed in Figure 2.1. Outside ILSVRC, some very successful
models were developed, mainly based on the above principles, with some novelty. A few
examples among these are Inception-ResNet (Szegedy et al., 2017), DenseNet (Huang et
al., 2017), WideResNet (Zagoruyko and Komodakis, 2017), and EfficientNet (Tan and Le,
2019).

Light-Weight CNNs. Despite impressive results, CNNs are very resource demanding,
in terms of data transfer, memory usage as well as computing power. In some contexts
such as mobile and embedded vision applications, the need for light weight yet competitive
networks is growing. For this reason, efforts were made to design models to meet this
demand. Iandola et al. (2016) developed SqueezeNet, in which the number of trainable
parameters is optimized with extensive use of 1×1 convolution layers such as described in
(2.58). They reached AlexNet accuracy with significantly fewer parameters. Later, Howard
et al. (2017) proposed MobileNet. Following ideas developed in a previous network called
Xception (Chollet, 2017), the authors built a very light architecture based on depthwise-
separable convolution layers. In this context, Kp = Kp+1, and Vlk = 0 if l ̸= k, where
the weight tensor V has been introduced in (2.47). We denote, for any l ∈ {0 . .Kp − 1},
Ṽl := Vll. Then, (2.50) becomes

Γ
(p+1)
l : X 7→ Λ(p)

((
Γ

(p)
l (X) ∗ Ṽ

(p)
l

)
↓ mp + b

(p)
l

)
. (2.60)

Besides, as in GoogLeNet/Inception networks (Szegedy et al., 2015), the number of chan-
nels is increased or reduced by using 1 × 1 convolution layers (2.58). More recent work,
such as ShuffleNet (J. Zhang and J. Zhang, 2018) and MobileNetV2 (Sandler et al., 2018),
proposed improvements over similar principles.
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Complex-Valued CNNs. In parallel, a family of complex-valued CNNs (CVCNNs)
saw a significant growth of interest in the recent years. The idea of complex-valued neu-
ral networks, which is the focus of a comprehensive survey (C. Lee et al., 2022), dates
back from the early nineteens, when Kim and Guest (1990), Leung and Haykin (1991),
and Georgiou and Koutsougeras (1992) adapted the backpropagation algorithm to the
complex domain. First applied to recurrent neural networks (Kataoka et al., 1998),2 the
concept was more recently adapted to the CNN framework (see below). These networks
implement convolution layers with complex-valued kernels, as well as complex extensions
of the traditional activation and pooling layers. They are well suited for tasks requir-
ing the phase information to be propagated through the entire network, as done in the
context of magnetic resonance imaging (Dedmari et al., 2018), polarimetric imaging (Z.
Zhang et al., 2017) or audio signals (Trabelsi et al., 2018). However, for image recognition
tasks, CVCNNs do not seem to perform better than standard CNNs, with equal number
of trainable parameters (Trabelsi et al., 2018).

Also based on complex convolutions, wavelet scattering networks (ScatterNets) (Bruna
and Mallat, 2013), for which a description is provided in Section 3.4, are more adapted
to image recognition. However, unlike CVCNNs, ScatterNets do not propagate the phase
information and use the modulus operator as an activation function instead. Therefore,
their properties and domains of application are significantly different from the above mod-
els. Mathematical motivations for employing complex-valued convolutions in deep learning
architectures have been introduced by Tygert et al. (2016).

2.3.4 Beyond CNNs

The last few years have seen a shift of paradigm in computer vision, inspired by models
developed in other research areas. Attention mechanisms have been widely used among
the natural language processing (NLP) community, in particular since Bahdanau et al.
(2016). The main idea is to model dependencies between input features in a non-local way,
in contrast to the CNN strategy. When combined with RNNs, attention allows focusing
on specific parts of the source, thus avoiding heavy computations on the whole signal.
Going further, Vaswani et al. (2017) claimed that attention mechanisms alone suffice to
produce state-of-the-art results on machine translation tasks, while significantly improving
training time and scalability. They designed a new type of feedforward neural network
called transformer, where hidden layers are based on non-local self-attention modules. This
was a breakthrough in the field of natural language processing, giving birth to powerful
algorithms such as BERT (Devlin et al., 2019) or GPT-3 (Brown et al., 2020). In its
simplest form, a self-attention module takes as input a matrix X ∈ RN×D, whose row
vectors xn ∈ RD constitute a set of local embeddings converted from an input sequence or
image. From X, three intermediate matrices, referred to as keys, queries and values, are
generated through linear transformations with trainable weight matrices V k, V q and V v.
They satisfy, respectively,

K := XV k ∈ RN×Dk ; Q := XV q ∈ RN×Dk ; U := XV v ∈ RN×D′
, (2.61)

2Recurrent neural networks (RNNs) form another family of neural networks, initially developed by
Rumelhart et al. (1986), and later improved by Hochreiter and Schmidhuber (1997) (long short-term
memory, or LSTM). RNNs are designed for processing input sequences with variable lengths, and have
been widely used in tasks such as handwriting or speech recognition.
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with Dk, D
′ ∈ N \ {0}. Then, a weighted average is performed between the N row vectors

un ∈ RD′ of U , using an attention matrix

A := Softmax
(
QK⊤/

√
Dk
)
∈ RN×N , (2.62)

where the softmax operator, described in (2.22), is applied to each row vector. The
module’s output is then defined by

Y := AU ∈ RN×D′
. (2.63)

The attention matrix, which contains inner products between keys and queries, models
dependencies between any two embeddings xn, xn′ ∈ RD, with n, n′ ∈ {0 . . N − 1}.

From the computer vision perspective, among the many attempts to combine CNNs
with self-attention or other types of non-local operations, we can cite X. Wang et al. (2018),
and Carion et al. (2020). Meanwhile, Ramachandran et al. (2019) designed a ResNet-like
model in which all convolution layers are replaced by self-attention modules. They out-
performed the baseline on ImageNet-1K classification task with increased computational
efficiency and 29% fewer trainable parameters. However, it was not until recently that
Dosovitskiy et al. (2021) transposed the actual transformer model from NLP to computer
vision. When pretrained on large image datasets, the corresponding network, referred
to as vision transformer (ViT), achieves excellent results on ImageNet-1K and small im-
age datasets with significantly fewer computational resources than CNNs. As of today,
transformers in computer vision are a rapidly growing area of research.

2.4 Feature Extraction Properties in CNNs
It is widely assumed that a good feature extractor must retain discriminant image com-
ponents while decreasing intra-class variability (LeCun et al., 1998; Bruna and Mallat,
2013). In particular, information about feature frequencies and orientations should be
captured by the operator (LeCun et al., 1998; Liao and Peng, 2010; Bruna and Mallat,
2013). On the other hand, extracted features should remain consistent under transfor-
mations including small shifts, rotations, deformations or scaling (Liao and Peng, 2010;
Sifre and Mallat, 2013; Bruna and Mallat, 2013; Bietti and Mairal, 2017; Wiatowski and
Bölcskei, 2018). We refer the reader to Section 3.4.1 for a formal definition of stability un-
der deformations. This requirement is motivated by the principle that similarly-appearing
input images should yield similar classifications. This section reviews current knowledge
about feature extraction properties in the early layers of CNNs, and whether the above
requirements are satisfied.

2.4.1 Gabor-Like Patterns in Trained Convolution Kernels

When studying the response of primary visual cortex of cats and monkeys at various
points along the visual pathway, Hubel and Wiesel (1959, 1962, 1968) identified two types
of cells, respectively qualified as simple and complex. Each cell responds to input light
signals, with intensity varying with their position in the field of view. Later, Marĉelja
(1980), Daugman (1980), and Jones and Palmer (1987) discovered that simple cells are
responsive to input signals with specific positions, orientations and frequencies. In other
words, their receptive fields belong to a class of 2D filters analogous to Gabor filters.
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Speculating that the visual cortex generates sparse representations of input signals,
Olshausen and Field (1996) proposed a sparse coding algorithm for natural images, in an
attempt to reproduce the natural behavior of simple cells with an artificial neural network.
The objective was to find a set of atoms—also called basis functions—from which input
images could be recovered with minimal information loss and maximal sparsity. After the
training phase, the learned atoms took the appearance of oriented waveforms at different
frequencies and positions, resulting in receptive fields similar to those found in the primary
visual cortex of mammals. More details on this are provided in Section 3.1.3. Building on
this, further work proposed to learn sparse representations using an overcomplete basis
set (Olshausen and Field, 1997), an energy-based encoder-decoder (Ranzato et al., 2006),
or supervised dictionary learning (Mairal et al., 2008b). However, the learned atoms
may take on more complex or specialized structures that are tailored to the type of signal
being modeled, rather than simply consisting of simple oscillating or oriented patterns. On
the other hand, Bell and Sejnowski (1997) proposed an unsupervised learning algorithm
based on information maximization, producing visual filters which, again, are localized
and oriented.

It turns out that the first layer of CNNs trained on image datasets such as ImageNet
(Russakovsky et al., 2015) exhibits a similar behavior: their receptive fields often take
the appearance of Gabor-like structures with well-defined frequencies and orientations
(Yosinski et al., 2014; Rai and Rivas, 2020). Therefore, they produce responses to input
signals that are analogous to simple cells in the visual cortex. This was first evidenced by H.
Lee et al. (2009) in the context of the convolutional deep belief network, a generative model
built after G. E. Hinton et al. (2006). This phenomenon can be evidenced by visualizing the
learned convolution kernels, as done by Krizhevsky et al. (2017) for AlexNet. Subsequent
architectures such as ResNet are no exception. Figure 1.1 displays the convolution kernels
of AlexNet’s first layer after training with ImageNet. The model is provided by the
Torchvision package belonging to PyTorch’s ecosystem (Paszke et al., 2017).

These observations, conducted in both natural and artificial contexts, suggest that a
wavelet or Gabor transform may be a good candidate to produce sparse signal represen-
tations which are useful for pattern recognition and classification. Chapter 3 provides
theoretical insights to support this hypothesis. On the other hand, does it grant stabil-
ity to deformations, introduced before as a fundamental requirement? To address this
question, we need to delve deeper into the properties of wavelet transforms. Section 2.4.2
provides a partial answer—in general, subsampled convolution layers are unstable to trans-
lations. However, the relation between convolution and max pooling layers remains poorly
understood. In Chapter 4, which is one of the main contributions of this thesis, we show
that, under specific conditions, max pooling can partially restore shift invariance. More
specifically, we unravel a connection between the operator “Conv→ MaxPool” on the one
hand, and “ComplexConv → Modulus” on the other hand, which produces stable image
representations.

2.4.2 CNNs are Generally Not Shift Invariant

It is generally assumed that CNNs are translation invariant. Namely, if we consider two
input images X and X′ that are slightly shifted with respect to each other, we expect
the corresponding feature vectors Γ (X) and Γ (X′) ∈ RL, where Γ has been defined in
(2.52), to be nearly identical. This however is not true. This misconception takes its roots
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in the equivariance property of convolutions in the continuous domain (i.e., convolutions
commute with translations). In this context, shifting an input will result in an equally
shifted output. Near shift invariance is then obtained by decreasing the resolution of
feature maps, as done in the pooling layers. In particular, Wiatowski and Bölcskei (2018)
showed that a wide variety of models becomes progressively more shift invariant with
increasing network depth.

However, one key element is often omitted from studies on CNNs: practical implemen-
tations are based on discrete feature maps and parameters. As mentioned by Azulay and
Weiss (2019) and R. Zhang (2019), both convolution and pooling layers may greatly di-
verge from shift invariance. This is due to a phenomenon called aliasing, which is caused
by subsampling. To get an intuition on this behavior, an example is provided in Sec-
tion 3.2.6. Therefore, feature vectors in standard CNNs are not shift invariant, which
could penalize the network’s accuracy and generalization capability.

To overcome this, R. Zhang (2019) proposed an antialiased version of CNNs based on
low-pass filtering, called blur pooling (BlurPool). This operator, defined by

Ωblur
0 (X) := X ∗ B, (2.64)

where B ∈ l2R(Z2) denotes a low-pass blurring filter, is used in two situations.

(1) Max pooling layers (MaxPool, decomposed into Max→ Sub)3 are replaced by max-
blur pooling (Max → Blur → Sub). In this context, Ωmax

0 , such as introduced in
(2.56), is replaced by

Ωmaxbl
0 := Ωblur

0 ◦Ωmax
0 . (2.65)

(2) Convolution layers followed by ReLU (Conv → Sub → ReLU) are blurred before
subsampling (Conv → ReLU → Blur → Sub). Note that ReLU is computed before
blurring; otherwise the network would simply perform on low-resolution images.

This approach follows a well-known practice in signal processing, which involves low-pass
filtering a high-frequency signal before subsampling, in order to avoid artifacts in recon-
struction. It improved shift invariance as well as accuracy of various networks including
AlexNet, ResNet, DenseNet and MobileNet. Interesting results were also obtained on
corrupted datasets such as ImageNet-C (Hendrycks and Dietterich, 2019), as well as tiny
image datasets such as CIFAR-10 (Krizhevsky and G. Hinton, 2009). However, this was
achieved with a significant loss of information. The question of designing a non-destructive
antialiasing method was tackled by X. Zou et al. (2023). They proposed an adaptive an-
tialiasing approach, called adaptive blur pooling, which predicts separate filter weights for
each spatial location and output channel. This allows preserving—to some extent—high-
frequency information, resulting in improved accuracy. Yet, this approach remains fun-
damentally based on low-pass filtering, simply avoiding antialiasing where high-frequency
information is needed. High-frequency features therefore remain unstable to translations.
Furthermore, the two above approaches come at the cost of increased computational cost,
memory consumption and, for the latter, higher number of trainable parameters. In
Chapter 5, we propose an alternative antialiasing approach based on complex-valued con-
volutions, extracting high-frequency features that are stable to translations. We observed
improved accuracy, with significant advantages in terms of computational efficiency and

3Sub and Conv stand for “convolution” and “subsampling,” respectively.
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memory usage. Our approach is actually rooted in the theoretical study presented in
Chapter 4.

Other works addressed the topic of improving translation invariance in CNNs. In
particular, Chaman and Dokmanic (2021) reached perfect shift invariance by using an
adaptive, input-dependent subsampling grid, whereas the previous models based on blur
pooling rely on fixed grids. This idea was harnessed by J. Xu et al. (2021) to get shift
equivariance in generative models. Although this method satisfied shift invariance for
integer-pixel translations, it did not address the problem of shift instability for fractional-
pixel translations. Besides, it may still lead to aliasing artifacts that could negatively
impact network accuracy and generalization performance. Combining this approach with
blur pooling actually produced the highest classification scores on ResNet trained with
ImageNet. This indicates that antialiasing remains beneficial, even after achieving perfect
shift invariance on the pixel grid. Another aspect of shift invariance in CNNs is related to
boundary effects. The fact that CNNs can encode the absolute position of an object in the
image by exploiting boundary effects was discovered independently by Islam et al. (2020),
and Kayhan and Gemert (2020). The study of this phenomenon is outside the scope of
this thesis. Shift invariance was further studied by J. Lee et al. (2020), from both local
and global points of view. A visualization technique based on cosine similarities was used.
The authors showed that Zhang’s antialiasing method improved local shift invariance but
not global one, which is rather affected by boundary effects.

To complete this discussion, Section 3.5.2 provides a comprehensive overview of theo-
retical studies on CNNs, bridging the gap between deep learning and wavelet analysis.

2.4.3 Focus on the Max Pooling Layer

Scherer et al. (2010) compared the performances of CNNs with average (subsampled low-
pass filtering) versus nonlinear max pooling (see Section 2.3.2), and found that the latter
outperforms the former. According to the authors, the goal of pooling layers is to improve
invariance by decreasing the size of feature maps. Overlapping pooling windows may
also help achieving this purpose. However, as explained in Section 2.4.2, max pooling in
particular is not shift invariant, due to aliasing. As explained before, a deeper analysis of
the properties of this operator, when used in combination with Gabor-like convolutions,
is presented in Chapter 4 as one of the main contributions of this thesis.

2.4.4 Concluding Remarks

To summarize, CNNs are a powerful tool for many computer vision tasks including im-
age classification. They contain heavily-parameterized feature extractors that exploit the
geometry of images. In particular, the learned kernels in initial convolution layers sponta-
neously adopt Gabor-like structures, which extract discriminative feature at various fre-
quencies and orientations. The properties of convolutions with oriented band-pass filters
are examined in Chapter 3, from the point of view of sparse image representations. De-
spite their strengths, discrete subsampled convolutions with band-pass filters are unstable
to translations, a topic which is specifically addressed in this thesis.
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Chapter 3

Background on Wavelet Analysis

We have seen in Chapter 2 that CNNs are intended to transform input images
into “useful” representations for classification. We have also identified some
desired properties for such representations. In particular, the first convolution

layer, when trained on image datasets, spontaneously transform inputs into wavelet or
Gabor-like representations, thus achieving frequency and directional selectivity. In this
chapter, we cover theoretical aspects of multiresolution analysis, and discrete wavelet
transforms in particular, with a focus on two-dimensional applications. We shall see that
there are very good reasons for why such image transformations are observed in CNNs,
and why they have been used in many other domains outside machine learning. Finally,
we will present some applications in which wavelet transforms have been explicitly used
in the context of image classification.

3.1 Sparse Representations of Images

One possible angle of approach for wavelet analysis is to consider the problem of sparse
coding. More specifically, we seek a family of elementary atoms, or basis functions, such
that any input signal from a given class can be reconstructed using a limited number
of atoms. Moreover, we want the signal reconstruction to be as close as possible from
the original signal. A sparse coding effectively captures the most prominent features in a
given class of signal (e.g., pikes, edges, corners, textures, etc.). It converts raw input data
into richer signal representations which, in turn, can be used as input for deeper feature
extractors as in CNNs, before feeding a linear classifier.

The present dissertation is mainly focused on two-dimensional images, which contain
localized and oriented features at various scales. In their simplest form, they can be
modeled as piecewise smooth signals with one-dimensional discontinuities (Vetterli, 2001).
In Section 3.1.1, we introduce a mathematical formulation of the sparse coding problem.
Then, in Section 3.1.2, we present two approaches to solve it and introduce wavelet bases
as a good candidate for nonlinear sparse coding in an orthonormal basis. Finally, in
Section 3.1.3, the concept of dictionary learning is outlined, which involves learning the
basis functions from the data rather than relying on handcrafted ones, thus eliminating the
requirement for expert knowledge. Sections 3.1 and 3.2 are principally based on Vetterli
(2001) and Mallat (2009).
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3.1. SPARSE REPRESENTATIONS OF IMAGES

3.1.1 General Problem Formulation

Let I ⊂ l2R(Z2) denote a set of images. Given a set of indices B, we consider a dictionary
of (possibly complex) two-dimensional sequences, called basis functions, denoted by En ∈
l2C(Z2) for any n ∈ B. We denote by J := span (En)n∈B the subspace of l2C(Z2) spanned
by the basis functions, and assume that I ⊂ J . We now consider a mapping (or feature
extractor, as seen in Chapter 2), denoted by

Γ : I → CB, (3.1)

and the corresponding projection (“image reconstruction”) on J :

Π : X 7→
∑
n∈B

Γn(X) En, (3.2)

where we have denoted E := (En)n∈B and Γ := (Γn)n∈B. The goal is to describe input
images in terms of basis function coefficients, which can be seen as the “building blocks”
of our image set. By rearranging information in a certain way, such image representation,
when chosen properly, may be much more useful than a simple pixel description.

One possible way to select a “proper” feature extractor is by minimizing a certain error
function E : (I, CB, J B)→ R+. For any X ∈ I,

Γ (X) := argmin
y∈CB

E(X, y, E). (3.3)

For instance, one may want to minimize the Euclidean distance between an input image
and its projection on J . In this case, E is defined as the mean squared error (MSE):

E : (X,y,E) 7→
∥∥∥∥∥X−∑

n∈B
yn En

∥∥∥∥∥
2

2

. (3.4)

If, moreover, (En)n∈B is an orthonormal family, then we get

Γn : X 7→ ⟨X, En⟩ ∀n ∈ B, (3.5)

and Π is simply the orthonormal projection on J .
In many tasks such as compression, denoising, pattern recognition or inverse problems,

it can be interesting to get a sparse description of input images. In other words, we
want information to be captured by a small number M ≪ card(B) of nonzero coefficients
Γn(X). The corresponding projection Π(X) is called an M -term approximation. Assuming
(En)n∈B is an orthonormal basis, a possible approach is to perform linear projection on a
fixed subspace spanned by a carefully-chosen subset of (En)n∈B indexed by BM ⊂ B, such
that M := card(BM )≪ card(B). In this case, (3.5) becomes

Γn : X 7→
{
⟨X, En⟩ if n ∈ BM ;
0 elsewhere.

(3.6)

Alternatively, a sparse representation can be obtained by selecting a set of support basis
functions (i.e., associated with nonzero coefficients) in an adaptive, nonlinear fashion. In
this context, the minimization problem (3.3) becomes

Γ (X) := argmin
∥y∥0≤M

E(X, y, E), (3.7)
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CHAPTER 3. BACKGROUND ON WAVELET ANALYSIS

where ∥y∥0 denotes the number of nonzero coefficients (“l0-norm”). In the general case
where (En)n∈B is an over-complete (redundant) dictionary, this problem is NP-hard. How-
ever, there exists greedy algorithms which compute non-optimal yet efficient approxima-
tions, such as matching pursuit (Mallat and Z. Zhang, 1993). In the more restrictive
scenario where (En)n∈B is an orthonormal basis, we can show that the feature extractor
Γ satisfying (3.7) is defined by

Γn : X 7→
{
⟨X, En⟩ for the M largest values of |⟨X, En⟩|;
0 elsewhere,

(3.8)

which is different from the linear feature extractors defined in (3.5) and (3.6). Therefore,
Π linearly projects X on an adaptive, input-dependent subspace of I. As such, Π is a
nonlinear approximation function.

We now address the problem of choosing an orthonormal basis (En)n∈B which yields
sparse image representations with good reconstruction properties. Then, we extend the
problem to more generic dictionaries (En)n∈B, which are possibly redundant and non-
orthogonal, and introduce the concept of dictionary learning (Mairal et al., 2008b).

3.1.2 Sparse Coding in Orthonormal Bases

Let (En)n∈B denote an orthonormal family of l2C(Z2), and J := span (En)n∈B. For any X ∈
I, the reconstruction error E(X, Γ (X), E) is denoted by E l

M (X) for linear approximations
(3.6), and Enl

M (X) in the nonlinear setting (3.8). On the one hand, we have:

E l
M (X) =

∑
n/∈BM

|⟨X, En⟩|2 . (3.9)

On the other hand, the nonlinear feature extractor Γ satisfying (3.7) selects the M largest
inner products and sets all others to 0, as written in (3.8). For a given image X ∈ I, we
denote by Bnl

M (X) ⊂ B the set of M selected basis function, such that Γn(X) = 0 for any
n /∈ Bnl

M (X). Then, the reconstruction error is equal to the residual energy:

Enl
M (X) =

∑
n/∈Bnl

M (X)

|⟨X, En⟩|2 , (3.10)

which strongly depends on the choice of orthonormal basis. The “optimal basis”, in
turn, depends on the class of input images and its distribution. Note that, by design,
Enl

M (X) ≤ E l
M (X) for any X ∈ I.

In this section, we explore several such bases and introduce wavelet bases and their
properties. We assume that input images X ∈ I are supported in a fixed square grid of size
N ×N , denoted by BN ⊂ Z2. We also denote by IN ⊂ l2C(Z2) the subspace of (complex-
valued) images supported on BN . We therefore have I ⊂ IN . To alleviate notations, in
this section we discard all indices outside BN .

Pixel Basis. For two-dimensional images, the trivial basis of IN is made of N2 “pixel
atoms”, indexed by B := BN . More precisely, for any n ∈ BN ,

En[p] := δnp ∀p ∈ BN . (3.11)
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3.1. SPARSE REPRESENTATIONS OF IMAGES

Then, we simply have ⟨X, En⟩ = X[n]. The sparse coding Γ (X) therefore consists in
keeping the M highest-energy pixels of X and setting all the others to 0. We can easily
see that, if energy is spread across the image, then the residual energy (3.10) will be very
high if M ≪ N2. Therefore, the pixel basis is ill-suited for sparse coding of most signal
families.

Fourier Basis. At the opposite end of the scope, we can encode images in the frequency
domain. To this end, we consider the Fourier basis which, as before, is indexed by B := BN .
For any n ∈ BN ,

En[p] := 1
N

exp
(2iπ ⟨n, p⟩

N

)
∀p ∈ BN . (3.12)

Then, for any n ∈ BN , ⟨X, En⟩ is obtained by computing the discrete Fourier transform
of X at discrete frequency n. The sparse coding Γ (X) therefore consists in keeping the M
largest Fourier coefficients of X (in terms of modulus), and setting all others to 0.

If input images are realizations of a smooth stationary process, then the discrete Fourier
transform provides a powerful framework to encode most of their energy over a small
number of coefficients. Moreover, the discrete Fourier transform is computed with an
efficient algorithm called the fast Fourier transform (FFT), with complexityO(N2 log(N)).
The situation is comparable to 1D signals such as time-invariant musical sequences. For
example, a three-note chord played on a piano (e.g., C major triad) will be mainly encoded
into coefficients associated with frequencies around 523 Hz, 659 Hz and 784 Hz, as well as
their harmonics. Setting to 0 the frequencies lying in between will not change much the
reconstructed signal.

However, the discrete Fourier transform is ill-suited to encode localized events, because
the corresponding basis functions themselves are nonlocal. Therefore, encoding a single
event requires many nonzero coefficients. This scenario is very common in full musical
sequences, but also in 2D images, which generally contain local discontinuities.

Wavelet Bases. We have seen that the pixel basis is well-suited to encode punctual
events whereas the Fourier basis does exactly the opposite: encoding regular signals with-
out any sharp transition (e.g., textures, time-invariant musical sequences, etc.). Therefore,
neither of them seem appropriate for images, which, as mentioned in the introduction of
Section 3.1, can be modeled as piecewise smooth signals with local irregularities. What is
actually needed is something in between: a basis able to encode both spatial and frequency
features. This is where wavelets come into play. The atoms of a wavelet basis are made
of localized oscillating waveforms, characterized by a certain frequency and spatial local-
ization. Such a basis spawns sparse representation of piecewise regular signals, as will be
explained in Section 3.2.3. Actually, there exists a tradeoff between spatial and frequency
resolutions, referred to as the Heisenberg’s uncertainty principle: any given wavelet basis
function satisfies

σ2
spat × σ2

freq ≥
1
4 , (3.13)

where σ2
spat and σ2

freq respectively denote the functions’s spatial (or time) and frequency
variance in a given direction (Mallat, 2009, p. 44). In a way, the pixel and Fourier bases
represent the two extreme configurations, with either perfect spatial or frequency resolu-
tion.
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CHAPTER 3. BACKGROUND ON WAVELET ANALYSIS

Wavelets take their roots in time-frequency analysis. Working on sound waves, and
inspired by quantum physics, Gabor (1946) designed a signal decomposition over wave-
forms which minimize the time-frequency support (3.13). These waveforms are made of a
sliding Gaussian window modulated by a complex exponential with varying frequencies:

ψu, ν : t 7→ ϕ(t− u) eiνt, (3.14)

where u and ν ∈ R respectively denote the time and frequency around which input signals
are analyzed, and ϕ ∈ L2

R(R) denotes a normalized Gaussian window of fixed size. Gabor
showed that such a decomposition along both time and frequency axes resemble the human
perception of sounds. Forty years later, Grossmann and Morlet (1984) laid the foundation
for wavelet analysis, by designing an invertible continuous transform over translations and
dilations of a single Gabor waveform ψ0, 1, called Morlet wavelet in this context. While
the Gabor transform initially relied on a fixed window size, in the continuous wavelet
transform (CWT), the window size is decreased when frequency increases. This was
initially motivated by the need for a proper separation of closely-spaced geophysical waves
at high frequencies.

In Section 3.2, we will introduce multiresolution discrete wavelet transforms, which
come with a fast decomposition algorithm called the fast wavelet transform (FWT). Before
that, we introduce an algorithm by Olshausen and Field (1996) to learn optimal basis
functions from data, which ultimately led to the concept of dictionary learning. We shall
see that wavelet or Gabor-like patterns spontaneously arise when learning basis functions
on landscape images, using nonsmooth regularization.

3.1.3 Toward Dictionary Learning

In this section, we no longer restrict to orthonormal bases, but instead seek an overcom-
plete dictionary. Rather than manually selecting a dictionary and searching for an optimal
sparse coding within that family, a data-driven approach can be adopted where the ba-
sis functions (En)n∈B are learned directly from the data, thereby removing the need for
handcrafted design. Olshausen and Field (1996) were among the first to propose learning
basis functions while enforcing sparsity. For this purpose, they introduced a nonsmooth
regularization term to the error function (3.4), for instance the l1-norm—as independently
proposed by Tibshirani (1996) in the context of lasso regression:

Eλ : (X,y, E) 7→ E(X, y, E) + λ ∥y∥1 . (3.15)

Note that the l1-norm is used in the regularization term, instead of the l0-“norm” as
employed in (3.7). Thanks to this choice, the minimization problem remains convex and
is therefore easier to solve. The goal is to minimize Eλ with respect to both y and E. In
this problem, the total number of basis functions card(B) is much greater than the number
of support basis functions M , which is controlled by the regularization hyperparameter λ.
Again, we restrict to real-valued basis functions.

The algorithm proposed by Olshausen and Field (1996) can be summarized as follows.
First, (En)n∈B is randomly initialized, and normalized such that ∥En∥22 = 1 for any n ∈ B.
Then, at each iteration, the two following steps are performed on a minibatch I ′ ⊂ I.

(1) Compute, for any X ∈ I ′, the representation y := Γ (X) ∈ RB minimizing the
regularized error function Eλ defined in (3.15).
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3.1. SPARSE REPRESENTATIONS OF IMAGES

Figure 3.1. Subset of 48 basis functions from (En)n∈B (card(B) = 192), learned from 4 000 patches
of size 16×16 extracted from natural scenes, using the two-step algorithm presented in Section 3.1.3.
Figure from Olshausen and Field (1996).

(2) Compute the gradient of Eλ(X, Γ (X), E) with respect to En, averaged over all images
in X ∈ I ′ in the minibatch. Then, update the basis functions (En)n∈B with stochastic
gradient descent.

Figure 3.1 displays the basis functions obtained using the above algorithm, trained on
patches of size 16× 16 extracted from landscape images (card(B) = 192). We notice that
(En)n∈B are localized, and present oriented, band-pass Gabor-like structures. Besides, the
corresponding receptive fields resemble those of mammalian visual cortex, as explained in
Section 2.4.1. Therefore, wavelet-like basis functions seem to provide a useful framework
for image representations, from the perspective of natural vision as well as sparse coding.

Intuitively, an analogy with natural languages may help to understand why redundancy
can be exploited to improve sparsity. A natural language is fundamentally redundant,
offering many different possibilities to express a single idea, with more or less sparsity. For
example, a “road vehicle for freight transportation” is usually referred to as a “truck”. The
concept could have been accurately described without the latter word, but using it is of
great help for efficient communication. Moreover, different languages or dialects may have
different degrees of redundancy in a given lexical field, depending on their usage, culture,
geographical area, period of history, etc. Similarly, in image processing, selecting an
appropriate dictionary of basis functions can play an important role in achieving optimal
performance for a given task and class of images. The chosen dictionary must indeed
effectively encode features which are abundant in this specific class and provide relevant
information for the task at hand. For example, a dictionary that has been trained on a
dataset of natural landscape images will be better suited for image classification on this
category of images, rather than a general-purpose dictionary. In particular, this property
has been successfully exploited for various applications such as color image restoration
(Mairal et al., 2008a), and more generally led to the development of dictionary learning
(Donoho and Elad, 2003; Aharon et al., 2006; Mairal et al., 2008b, 2009; Chabiron et al.,
2015). More information on the link between sparsity and redundancy in image processing
can be found in a work by Elad et al. (2010). Redundancy will be exploited in Section 3.3 in
the context of complex wavelet transforms. More specifically, images will be decomposed
in a redundant frame, a concept initially developed by Duffin and Schaeffer (1952).
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3.2 Filter Bank Decomposition and Wavelet Bases

In this section, we start by describing a class of orthonormal bases of l2R(Z2), based on dis-
crete invertible filter banks (FBs) (Vetterli, 1986). Then, we explain the link with wavelet
bases in the continuous domain. Mallat (1989) showed that such a FB decomposition
encodes a fast wavelet transform (FWT), which approximates any function F ∈ L2

R(R2)
into a wavelet basis, at an arbitrarily high resolution.

3.2.1 Filter Bank Decomposition with Perfect Reconstruction

We could, as in Section 3.1.2, work on the subspace of images supported on BN (square
grid of size N ×N). However, this would require the use of circular convolutions. Instead,
we will recursively build orthonormal bases for the entire space l2R(Z2). As we shall see,
decomposing images in such bases is done with standard convolutions, as in CNNs.

Quadrature Mirror Filters. We consider a pair of low- and high-pass 1D orthogonal
filters h, g ∈ l2R(Z) satisfying the following requirements:

ĥ(0) =
√

2; (normalized low-pass filter) (3.16)
∀ω ∈ [−π, π] ,

∣∣ĥ(ω)
∣∣2 +

∣∣ĥ(ω + π)
∣∣2 = 2; (orthogonality condition) (3.17)

∀ω ∈ [−π, π] , ĝ(ω) = e−iω ĥ∗(ω + π), (quadrature mirror relationship) (3.18)

with the “+” sign being defined modulo (2π), and where we have considered the discrete-
time Fourier transform l2C(Z)→ L2

C([−π, π]), defined, for any x ∈ l2C(Z), by

x̂(ω) :=
∑
n∈Z

x[n]e−iωn ∀ω ∈ [−π, π] . (3.19)

The filters h and g are referred to as quadrature mirror filter (QMFs). Then, we build a
separable 2D filter bank (FB), containing a low-pass filter G0 and three high-pass filters
G1−3 ∈ l2R(Z2), defined by

G0 := h⊗ h; G1 := h⊗ g; G2 := g ⊗ h; G3 := g ⊗ g, (3.20)

where ⊗ denotes the tensor (or outer) product.

Filter Bank Decomposition. To start with, we consider the input space J (0)
0 :=

l2R(Z2), spanned by the pixel basis E(0)
0 :=

(
E(0)

0, n

)
n∈Z2 defined, similarly to (3.11), by

E(0)
0, n[p] := δnp ∀p ∈ Z2. (3.21)

Considering an input image X, we initialize the decomposition with the feature map of
pixel coefficients D(0)

0 := X.
The filter bank decomposition is a recursive algorithm. At any stage j + 1 ∈ N \ {0},

we consider a subspace J (j)
0 ⊂ l2R(Z2), spanned by the basis E(j)

0 generated at previous
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stage j. We denote by D(j)
0 the corresponding feature map of coefficients, encoding the

linear projection of X on J (j)
0 . Then, J (j)

0 is split into four orthogonal subspaces

J (j)
0 =

3⊕
k=0
J (j+1)

k . (3.22)

For any k ∈ {0 . . 3}, J (j+1)
k is spanned by the orthonormal basis E(j+1)

k , defined, for any
p ∈ Z2, by

E(j+1)
k, p =

∑
n∈Z2

Gk[n− 2p] E(j)
0, n, (3.23)

where the filters Gk have been introduced in (3.20). J (j+1)
0 is a subspace of low-resolution

images whereas J (j+1)
1−3 are detail subspaces, respectively containing horizontal, vertical and

residual (corners) features at scale j. For each k ∈ {0 . . 3}, the feature map encoding the
linear projection on J (j+1)

k , denoted by D(j)
k , is computed with the following subsampled

convolution:
D(j+1)

k =
(
D(j)

0 ∗Gk

)
↓ 2, (3.24)

where the 2D convolution product and subsampling operator have been respectively de-
fined in (2.44) and (2.45). We remind the reader that Gk[n] := Gk[−n] denotes the
“flipped” sequence. Then, the low-resolution subspace J (j+1)

0 is in turn decomposed, fol-
lowing the above procedure. The algorithm stops after reaching the desired number of
stages J > 0—referred to as decomposition depth.

We denote by ⊎ the concatenation operator. For any depth J ∈ N \ {0}, the family

E(J) :=
J⊎

j=1

3⊎
k=1

(
E(j)

k, n

)
n∈Z2 ⊎

(
E(J)

0, n

)
n∈Z2 (3.25)

is an orthonormal basis of l2R(Z2), which we refer to as a discrete wavelet basis. In this
context, the sparse coding Γ defined in (3.6) (linear setting) or (3.8) (nonlinear setting)
is reindexed, and satisfy

Γ
(j)
k, n(X) :=

{〈
X, E(j)

k, n(X)
〉
= D(j)

k [n] if n ∈ BM or Bnl
M (X), respectively;

0 elsewhere.
(3.26)

A visual representation of discrete wavelet basis functions is provided in Figure 3.2.

Quality of the Approximation. To investigate the potential of filter bank decomposi-
tions for approximating input images with a limited number of coefficients, mathematical
properties of both images and filters must be characterized. As digital images are discrete
representations of continuous light signals, a characterization in the continuous domain is
typically more appropriate, and easier to establish. To this end, Section 3.2.2 provides
a bond between analog and digital signal processing by linking discrete FB decomposi-
tions and continuous wavelet bases. Then, Section 3.2.3 presents the main results on the
sparsity of discrete wavelet representations.
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3.2.2 Link with Wavelets Defined on the Continuous Domain

In this section, we present Mallat’s results (2009, Chap. 7) in the 2D case. In a nutshell, if
we consider X ∈ l2R(Z2) as the discrete sampling (e.g., digital acquisition) of a continuous
image F ∈ L2

R(R2) (e.g., the analog light signal captured by the sensor of a digital camera),
then the feature maps D(j)

k introduced in Section 3.2.1 encode the projection of F in an
orthonormal wavelet basis. It contains the translated and dilated versions of three mother
wavelets Ψ1−3 (encoding horizontal, vertical and residual features at various scales), plus
the translated versions of a scaling function Φ at the coarsest scale (encoding the remaining
low-frequency features).

Multiresolution Approximations. Let Φ ∈ L2
R(R2) denote a low-pass scaling func-

tion, satisfying
∥Φ∥L2 = 1 and Φ̂(0) = 1, (3.27)

where we have considered the two-dimensional Fourier transform L2
C(R2) → L2

C(R2),
defined, for any F ∈ L2

C(R2), by

∀ξ ∈ R2, F̂ (ξ) :=
∫∫

R2
F (x)e−i⟨ξ, x⟩ d2x. (3.28)

We consider an initial projection subspace

V := span(Φn)n∈Z2 ⊂ L2
R(R2), (3.29)

spanned by a family of translated versions of Φ defined by

Φn : x 7→ Φ(x− n). (3.30)

We assume (Φn)n∈Z2 to be an orthonormal basis of V. We now consider, for any j ∈ Z,
an orthonormal family, denoted by

(
Φ

(j)
n
)

n∈Z2 of dilated and translated scaling functions
at scale j:

Φ(j)
n : x 7→ 1

2j
Φ

(
x− 2jn

2j

)
∀n ∈ Z2. (3.31)

We also introduce
V(j) := span

(
Φ(j)

n

)
n∈Z2 ⊂ L2

R(R2). (3.32)

We assume that, for any j ∈ Z, V(j+1) ⊂ V(j). If, moreover,

lim
j→+∞

V(j) = {0} and lim
j→−∞

V(j) = L2
R(R2), (3.33)

then the sequence of subspaces
(
V(j))

j∈Z is called a multiresolution analysis (Mallat, 1989).
The linear projection of any continuous 2D signal F ∈ L2

R(R2) on V(j) approximates F at
a resolution which is decreased by a factor 2 when j is incremented.
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QMFs and Wavelet Bases. Let (h, g) denote a pair of QMFs satisfying (3.16)–(3.18),
and G0−3 the corresponding 2D filter bank such as defined in (3.20). If

inf
|ω|≤π/2

∣∣ĥ(ω)
∣∣ > 0, (3.34)

then, Mallat’s theorem (1989) implies that there exists a unique multiresolution analysis(
V(j))

j∈Z such that, for any j ∈ Z and any p ∈ Z2,

Φ(j+1)
p :=

∑
n∈Z2

G0[n− 2p]Φ(j)
n , (3.35)

where
(
Φ

(j)
n
)

n∈Z2 denotes the orthonormal basis of V(j) (3.32). In other words, G0 con-
tains the coordinates of the dilated and translated scaling function Φ

(j+1)
p (3.31) in the

approximation space of finer resolution V(j) (3.32). Recall that, by definition of a mul-
tiresolution analysis, V(j+1) ⊂ V(j); therefore, Φ(j+1)

p ∈ V(j). Furthermore, we consider,
for any k ∈ {1 . . 3}, j ∈ Z and p ∈ Z2,

Ψ
(j+1)
k, p :=

∑
n∈Z2

Gk[n− 2p]Φ(j)
n . (3.36)

Then, analogous to (3.31), we get a family of translated and dilated wavelets:

Ψ
(j)
k, n : x 7→ 1

2j
Ψk

(
x− 2jn

2j

)
, (3.37)

where the mother wavelet Ψk := Ψ
(0)
k, 0 satisfies

∥Ψk∥L2 = 1 and Ψ̂k(0) = 0. (3.38)

Now, for any k ∈ {1 . . 3} and any j ∈ Z, we introduce the detail subspace

V(j)
k := span

(
Ψ

(j)
k, n

)
n∈Z2 ⊂ L2

R(R2). (3.39)

Then, for any j ∈ Z, V(j)
0 := V(j) (3.32) can be decomposed into four orthogonal subspaces

V(j)
0 =

3⊕
k=0
V(j+1)

k , (3.40)

where V(j+1)
0 := V(j+1) denotes the subspace of coarser resolution satisfying (3.32) with

j ← j+1, and where V(j+1)
1−3 denotes the three detail subspaces (3.39), respectively encoding

horizontal, vertical and residual features.
Finally, for any depth J ∈ N \ {0}, the family

Ψ (J) :=
J⊎

j=1

3⊎
k=1

(
Ψ

(j)
k, n

)
n∈Z2 ⊎

(
Φ(J)

n

)
n∈Z2 (3.41)

is an orthonormal basis of V, referred to as a wavelet basis. As evidenced in (3.44), it is the
continuous counterpart of the discrete basis E(J) as defined in (3.25). Figure 3.2 provides
a visual representation of discrete and continuous basis functions satisfying Section 3.3.3
and (3.36), respectively.
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Figure 3.2. Left: discrete basis functions E(j)
k, 0 (3.23) with depth j = 2 and k = 1 . . 3, computed

with Q-shift orthogonal QMFs of length 10 (see Section 3.3.3). Right: continuous basis functions
(wavelets) Ψ (j)

k, 0 (3.36). Bottom: modulus of the discrete-time Fourier transform of E(j)
k, 0 (the origin

is located at the center).

Remark 3.1. The mother scaling function Φ and wavelets Ψ1−3 ∈ L2
R(R2) are the tensor

products of a one-dimensional scaling function ϕ with a wavelet ψ ∈ L2
R(R):

Φ := ϕ⊗ ϕ; Ψ1 := ϕ⊗ ψ; Ψ2 := ψ ⊗ ϕ; Ψ3 := ψ ⊗ ψ. (3.42)

Any pair of QMFs (h, g) satisfying (3.16)–(3.18) and (3.34) can therefore be associated
with a pair of scaling function and wavelet (ϕ, ψ).

Remark 3.2. According to (3.33), we can get an orthonormal basis of the whole space
L2
R(R2) if j starts from −∞. Besides, we can get rid of the scaling functions

(
Φ

(J)
n
)

n∈Z2 if
J goes to +∞.

The Fast Wavelet Transform (FWT). Let F ∈ L2
R(R2) denote a 2D continuous

signal. We consider X ∈ l2R(Z2) encoding the linear projection of F on V:

∀n ∈ Z2, X[n] := ⟨F, Φn⟩ . (3.43)

Then, for any scale j ∈ N \ {0}, we can show that the linear projection of F on the
subspaces V(j)

0−3 are encoded by the FB feature maps introduced in Section 3.2.1:

∀k ∈ {0 . . 3} , ∀n ∈ Z2, D(j)
k [n] =

〈
F, Ψ

(j)
k, n

〉
, (3.44)

where we have denoted, for the sake of conciseness, Ψ (j)
0, n := Φ

(j)
n . Note that (3.43) and

(3.44) can be written as convolution products:

X[n] =
(
F ∗ Φ

)
(n) and D(j)

k [n] =
(
F ∗ Ψ (j)

k, 0
)
(2jn), (3.45)

where Φ : x 7→ Φ(−x) denotes a “flipped” function. Therefore, any element of V can be
decomposed in the orthonormal basis Ψ (J) by performing the FB decomposition described
in Section 3.2.1. It is performed with separable convolutions in O(Nf × N2), where Nf
denotes the support size of the QMFs h and g, and N denotes the support size of X. As
such, it is called fast wavelet transform (FWT).
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Remark 3.3. To maintain consistency with the notations used throughout this thesis, in
its present formulation, the FWT algorithm is initialized at j = 0 (corresponding to the
initial approximation scale 2j = 1). This differs from Mallat’s book (2009, p. 301), where
j typically starts at L < 0 such that 2L = N−1, with N being the number of discretization
points along the vertical or horizontal axis (i.e., the support size of X). It should be noted
that this change is a matter of convention and does not affect the content of this chapter.

Why the Continuous Framework Matters. Digital signal processing as well as
CNNs exclusively deal with discrete signals. Therefore, one can wonder what are the
benefits of adopting a purely theoretical continuous point of view. One motivation is to
provide a physical interpretation to FWT, since discrete signals are themselves an abstract
representation of the real world. Besides, mathematical properties of input images and
wavelets (see Section 3.2.3), as well as stability results such as Lipschitz continuity to
deformations (see Section 3.4.1) are established in the continuous domain. The unravelled
bond between the two worlds is therefore a powerful tool to extend these results to the
field of digital signal processing.

In Chapter 4, we will adopt a slightly different approach to link discrete and contin-
uous image processing. Instead of considering input images X as a uniform sampling of
continuous functions F using (3.43), we replace the scaling function Φ by the Shannon
scaling function Φsh, which is independent of the choice of QMFs (h, g). It is defined by
Φsh := sincπ ⊗ sincπ, where sincπ : x 7→ sin(πx)/(πx) denotes the normalized sinc function.
According to Mallat (2009, Theorem 3.5, p. 68), the family (Φsh

n )n∈Z2 is an orthonormal
basis of Vsh, which is a subspace of functions with compact support in the Fourier domain:

Vsh :=
{
F ∈ L2

R(R2)
∣∣∣ supp F̂ ⊂ [−π, π]2

}
. (3.46)

Note that we actually use the 2D formulation, mentioned in p. 82.

3.2.3 Sparsity of Wavelet Representations

This section examines the ability of wavelet bases to encode input signals using a small
number of nonzero coefficients. As we shall see, the sparsity of signal representations can
be increased by choosing wavelets with a large number of vanishing moments and small
support (Mallat, 2009, p. 284). For each class of signals under consideration, we compare
the asymptotic behavior of the linear and nonlinear reconstruction errors, E l

M (X) (3.9) and
Enl

M (X) (3.10), as the number of terms M approaches infinity. In the linear framework, the
set of selected indices BM corresponds to the largest values of j (i.e., the coarsest scales),
as they produce the largest-amplitude wavelet coefficients, and therefore yield the smallest
reconstruction error E l

M (X) in average.

One-Dimensional Framework

In the one-dimensional setting, we consider a pair of 1D scaling function and wavelet
(ϕ, ψ), characterized by a pair of low- and high-pass QMFs (h, g), as explained in Re-
mark 3.1. Let f ∈ L2

R(R) denote an input signal, from which we can get a discrete
sequence x ∈ l2R(Z), such that x[n] := (f ∗ ϕ)(n), similar to (3.45).
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Lipschitz-Continuous Functions. First, we consider the class of Lipschitz-continuous
functions, characterized by a Lipschitz constant α > 0. For any u ∈ R, there exists a
polynomial ϖu of degree d ≤ ⌊α⌋ and a residual function εu such that, for any t ∈ R,

f(t) = ϖu(t) + εu(t), (3.47)
with |εu(t)| ≤ C|t− u|α (3.48)

for a certain constant C > 0. Now, we assume that ψ has at least q := ⌊α⌋+ 1 vanishing
moments. By definition, ψ is orthogonal to any polynomial of degree d < q. This property
can be characterized on the low-pass filter h:

∀d ∈ {0 . . q − 1} , ĥ(d)(π) = 0, (3.49)

where ĥ(d) denotes the d-th derivative of ĥ, with the one-dimensional discrete-time Fourier
transform being defined in (3.19). Then, for any j ∈ {1 . . J} and n ∈ Z, the dilated and
translated wavelet ψ(j)

n also has q vanishing moment. Therefore, the wavelet coefficient
d(j)[n] only depends on the residual part of the function:

d(j)[n] :=
〈
ε2jn, ψ

(j)
n

〉
, (3.50)

where (3.47) has been applied with u← 2jn. According to (3.48), ε2jn has small amplitude
in a neighborhood around 2jn, if the Lipschitz constant α is large. Therefore,

∣∣d(j)[n]
∣∣ is

small if the wavelet (which is centered around 2jn) is sufficiently compact in time. This
occurs at finer scales, i.e., for smaller values of j. Thus, the wavelet coefficients that
have significant amplitudes correspond to large values of j, capturing slow variations of
the input signal. Furthermore, coarser scales contain exponentially fewer basis functions,
which leads to fast-decaying wavelet coefficients, and a sparse signal representation. We
therefore get a polynomial decay for the reconstruction error, in both linear and nonlinear
schemes:

E l
M (x) = O(M−2α) and Enl

M (x) = O(M−2α). (3.51)

Piecewise Lipschitz-Continuous Functions. Lipschitz-continuous functions are too
restrictive for many real-life scenarios. For instance, audio signals usually contain localized
events that are characterized by sharp transitions between smoother regions. To model
such signals, one can consider piecewise Lipschitz-continuous functions. In this case, the
reconstruction error for linear M -term approximations no longer decays as fast as in the
case of regular functions, because the signal contains high-frequency features that cannot
be captured by the large-scale wavelet coefficients. However, a finite number of sharp
transitions does not affect the asymptotic behavior of nonlinear M -term approximations,
because the wavelet coefficients detecting these transitions, which are large at first, decay
exponentially with increasing rank. All in all, we get

E l
M (x) = O(M−1) and Enl

M (x) = O(M−2α). (3.52)

Remark 3.4. Another important property of the mother wavelet ψ is its support size
(or decay rate in the case of infinite support). This property has a direct impact on the
number of wavelet coefficients that can detect an irregularity in the signal. A smaller
support size generally leads to sparser signal representation, especially when it contains
many irregularities. However, Daubechies (1988) showed that the number of vanishing
moments is proportional to the size of the wavelet support. Therefore, a tradeoff must be
found to produce efficient M -term approximations.
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Bounded Variation Functions. Another class of signals that can be considered for
functions that are not necessarily uniformly regular is bounded-variations functions, for
which the linear and nonlinear approximation errors satisfy

E l
M (x) = O(M−1) and Enl

M (x) = O(M−2). (3.53)

Two-Dimensional Framework

Lipschitz-Continuous Functions. The asymptotic behavior of the linear and nonlin-
ear approximation errors is similar to the one-dimensional framework (3.51), except for a
factor 2 in the exponent:

E l
M (X) = O(M−α) and Enl

M (X) = O(M−α). (3.54)

Piecewise Lipschitz-Continuous Functions. Unfortunately, unlike in 1D, the asymp-
totic decay in O(M−α) of Enl

M (X) established in (3.54) no longer holds. This is because
images have discontinuities along one-dimensional curves. Therefore, FWT will produce
an important number of high-amplitude coefficients along these curves, which only decay
in O(M−1) and therefore remain dominant whatever the Lipschitz constant. We thus have

Enl
M (X) = O(M−1). (3.55)

Bounded Variation Functions. These functions include large classes of images which
do not have irregular textures (Mallat, 2009, p. 467). As for Lipschitz-continuous func-
tions, the asymptotic behavior of the linear and nonlinear approximation errors resembles
the 1D case (3.53):

E l
M (X) = O(M−1/2) and Enl

M (x) = O(M−1). (3.56)

Despite being not as well-behaved as when applied to piecewise Lipschitz-continuous
1D signals, the 2D FWT has led to successful applications, among which image denoising
(Mallat and Hwang, 1992; Y. Xu et al., 1994; Donoho and Johnstone, 1995; Malfait and
Roose, 1997), image restoration (Starck and Bijaoui, 1994), or the JPEG-2000 standard
for image compression (Marcellin et al., 2000), principally based on the CREW algorithm
(Zandi et al., 1995). Subsequent research was conducted to improve this asymptotic
decay, leading to the design of geometric wavelets (Candès and Donoho, 1999, 2000; Do
and Vetterli, 2000, 2005; Le Pennec and Mallat, 2005; Peyré and Mallat, 2008).
Remark 3.5. Although the Lipschitz constant does not affect the asymptotic behavior of
the approximation error, having a large number of vanishing moments is still important for
generating low-amplitude wavelet coefficients in smooth regions and achieving sparsity in
image representations. Additionally, the size of the wavelet support remains an important
property in two dimensions, as it affects the multiplicative constant that determines the
rate at which the approximation error decays.

3.2.4 Examples of Wavelet Bases

As covered in Section 3.2.3, a good wavelet basis must be spanned by a wavelet with a high
number of vanishing moments (high frequency localization) and a fast decay rate (high
temporal or spatial localization). This section presents several historical approaches, and
explains how the time-frequency tradeoff has been handled.
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Two Precursors: the Haar and Shannon Wavelets. Long before Mallat’s multires-
olution theory, Haar (1911) constructed an orthonormal basis of L2

R(R) by translating and
dilating a very simple wavelet (although the designation did not exist at the time) with
value 1 on [0, 1/2] and −1 on [1/2, 1] (0 everywhere else). The corresponding scaling
function is the rectangular function. This first attempt perfectly fits the multiresolution
framework. It is associated with the pair of QMFs (h, g) satisfying

h[n] :=
{√

2/2 if n ∈ {0, 1};
0 otherwise.

(3.57)

The Haar wavelet has a very compact support size, but only one vanishing moment.
Seen from another angle, the Fourier transform of the Haar scaling function is the sinc
function, which slowly decays in O(1/ξ). Therefore, the Haar scaling function and wavelet
are highly localized in space but not in frequency. As such, the Haar basis is ill-suited for
sparse coding of piecewise Lipschitz-regular signals (see Section 3.2.3).

If we switch roles between spatial and Fourier domains, we get the Shannon basis, asso-
ciated with a sinc scaling function (Shannon, 1949), whose Fourier transform is compactly-
supported. The corresponding QMFs (h, g) satisfy, for any ω ∈ [−π, π],

ĥ(ω) :=
{√

2 if ω ∈
[
−π

2 ,
π
2
]
;

0 otherwise.
(3.58)

The Shannon wavelet has an infinite number of vanishing moments. However, it decays
slowly in O(1/t). The situation is therefore reversed compared to the Haar wavelet, making
the Shannon basis a poor candidate for sparse coding of piecewise Lipschitz-regular signals.

Besides, the QMFs h and g slowly decay in O(1/n), which makes them difficult to ap-
proximate in practice. It requires very large vectors to avoid numerical instabilities. From
a computational point of view, FWT with large convolution kernels can be implemented
in the Fourier domain by using the FFT algorithm. However, in CNNs, only spatial filters
with relatively small size are implemented. Therefore, the Shannon basis is ill-suited to
approximate the behavior of freely-trained networks, such as done in Section 5.4.2.

Several successful attempts to design a fast-decaying wavelet with a large number
of vanishing moments have been made since the 1980s. Two major representatives are
presented below.

Meyer Wavelets. Meyer (1985) designed a class of wavelet bases spanned by smooth
wavelets (in both spatial and Fourier domains). The corresponding QMFs (h, g) satisfy,
for any ω ∈ [−π, π],

ĥ(ω) :=
{√

2 if |ω| ≤ π/3;
0 if |ω| ≥ 2π/3.

(3.59)

Between π/3 and 2π/3, ĥ follows a smooth curve satisfying (3.17), such that ĥ remains
Cd at the junctions, for a given d ∈ N.

As for Shannon, the Meyer wavelets are C∞ with an infinite number of vanishing
moments. However, unlike the Shannon wavelet, they decay at an exponential rate which
increases with the smoothness d of ĥ. Therefore, Meyer bases are far more suitable for
sparse coding than Haar or Shannon bases. Nevertheless, from a numerical point of view,
this decay can remain slow, which can be an issue when relatively small filters are required
as in CNNs.
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Daubechies Wavelets with Compact Support. Instead of using QMFs with infinite
support as in the Meyer case, Daubechies (1988) designed a family of compactly-supported
wavelets, characterized by finitely-supported QMFs, also referred to as finite impulse re-
sponse (FIR) filters. For any q ∈ N \ {0}, a Daubechies wavelet with q vanishing moments
is characterized by a pair of QMFs (h, g) satisfying, for any ω ∈ [−π, π],

ĥ(ω) :=
√

2
(

1 + e−iω

2

)q

ϖ
(
e−iω), (3.60)

where ϖ is a polynomial designed such that ĥ satisfies the orthogonality condition (3.17).
Note that, by design, ĥ(ω) and its q− 1 first derivatives are equal to 0 at ω = π, as stated
in (3.49). Daubechies (1988) showed that, for a given number of vanishing moments
q, the QMFs have at least 2q nonzero coefficients, whereas the corresponding wavelets
have a minimal support size of 2q − 1. In fact, Daubechies wavelets have, by design,
the smallest possible support size for a given q. This result is in line with Heisenberg’s
uncertainty principle introduced in (3.13): increasing the number of vanishing moments
(i.e., increased frequency localization) is done at the cost of an increased support size
(i.e., decreased spatial localization). However, the filter’s energy remains concentrated in
a small region of its support when q is large.

It is worth noticing that the Daubechies wavelet with q = 1 vanishing moment is
nothing else that the Haar wavelet.

3.2.5 Discrete Wavelet Packet Transform

In multiresolution approximations, each subspace J (j)
k (3.22) (discrete framework) or V(j)

k

(3.40) (continuous framework) is characterized by four symmetric Fourier square windows
of size π/2j , containing most of its energy (or even all energy for the Shannon basis).
Therefore, the basis functions E(j)

k, n ∈ E(J) (3.25) or Ψ (j)
k, n ∈ Ψ (J) (3.41) are less localized

in frequency (and more localized in space) at finer scales (smaller values of j).
For some classes of input signals, one may want to increase Fourier resolution (and

decrease spatial resolution) at high frequencies. To this end, Coifman and Wickerhauser
(1992) generalized the link between wavelets and filter banks, by splitting the detail sub-
spaces J (j)

1−3 or V(j)
1−3 into 4 orthogonal subspaces, similarly to (3.22) or (3.40). Then, for

any j ∈ N and any l ∈
{
0 . . 4j − 1

}
, we get

J (j)
l =

3⊕
k=0
J (j+1)

4l+k and V(j)
l =

3⊕
k=0
V(j+1)

4l+k . (3.61)

Generalizing (3.23) (discrete framework) on the one hand, and (3.35), (3.36) (continuous
framework) on the other hand, the basis functions satisfy, for any k ∈ {0 . . 3} and p ∈ Z2,

E(j+1)
4l+k, p =

∑
n∈Z2

Gk[n− 2p] E(j)
l, n and Ψ

(j+1)
4l+k, p =

∑
n∈Z2

Gk[n− 2p]Ψ (j)
l, n, (3.62)

where we have denoted Ψ
(j)
0, n := Φ

(j)
n . As a reminder, at j = 0,

(
E(0)

0, n

)
n∈Z2 denotes the

pixel orthonormal basis of J (0)
0 := l2R(Z2), such as introduced in (3.21), and

(
Ψ

(0)
0, n

)
n∈Z2 :=(

Φ
(0)
n
)

n∈Z2 denotes the orthonormal basis of the initial approximation space V(0) (3.32).
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Recall that any discrete image X ∈ l2R(Z2) encode the linear projection of an input
function F ∈ L2

R(R2) on V, as described in (3.43). Then, the feature maps D(j)
l of wavelet

packet coefficients, encoding the linear projection of X on J (j)
l (discrete framework), or

F on V(j)
l (continuous framework), are computed using the fast wavelet packet transform

(WPT) algorithm (Coifman and Wickerhauser, 1992). As for the FWT, initialization is
done with D(0)

0 := X. Then, similarly to (3.24), we get, for any l ∈
{
0 . . 4J − 1

}
and any

k ∈ {0 . . 3},
D(j+1)

4l+k =
(
D(j)

l ∗Gk

)
↓ 2. (3.63)

Examples of Wavelet Packet Bases. Depending on whether we choose to split a
given detail subspace as in (3.61), there are many possible wavelet packet bases. Several
approaches have been proposed to select the “best” basis for a given class of input signals
(Laine and Fan, 1993; Learned and Willsky, 1995; Sengur et al., 2007). However, this
topic is beyond the scope of this thesis. Instead, two typical examples of wavelet packet
bases are given below.

A special case is the standard wavelet basis E(J) (discrete framework) or Ψ (J) (contin-
uous framework), as introduced in (3.25) and (3.41). In this example, only the subspaces
of coarser resolution J (j)

0 (discrete framework) or V(j)
0 (continuous framework) are decom-

posed, for j ∈ {0 . . J − 1}. Another example is the pseudo-local cosine basis, corresponding
to a fully-decomposed binary tree. In this context, (3.25) and (3.41) become

E(J) :=
4J −1⊎
l=0

(
E(J)

l, n

)
n∈Z2 and Ψ (J) :=

4J −1⊎
l=0

(
Ψ

(J)
l, n

)
n∈Z2 . (3.64)

Unlike standard wavelet bases, the Fourier windows characterizing each subspace J (J)
l

(discrete framework) or V(J)
l (continuous framework) are of identical size π/2J . Therefore,

the basis functions (3.64) are equally well localized, both in space and frequency. The WPT
decomposition in a pseudo-local cosine basis is performed in O(Nf ×N2 × J) operations,
where, as a reminder, Nf and N respectively denote the support size of (h, g) (QMFs) and
X (input images).

3.2.6 Discrete Wavelet Transforms are Unstable to Translations

So far in this chapter, we explored the topic of designing sparse image representations. In
particular, wavelet bases and their like—among which wavelet packets—are good candi-
dates for this purpose, due to a tradeoff between spatial and frequency resolution. How-
ever, we set aside an important property for pattern recognition and image classification:
translation (or shift) invariance. As explained in Section 2.4, a good feature extractor
must retain discriminant image component while decreasing intra-class variability. Using
the notations introduced in Section 3.1.1, translation invariance (up to a phase shift) can
be formalized as follows:

∀n ∈ B, ∀u ∈ R2, |Γn(TuX)| = |Γn(X)| , (3.65)

where Tu : l2R(Z2) → l2R(Z2) translates input images by a vector u ∈ R2. A formal
definition involving antialiased interpolation will be provided in Chapter 4 (4.41). On the

46



3.2. FILTER BANK DECOMPOSITION AND WAVELET BASES

discrete grid, the translation operator is simply defined as follows:

∀p ∈ Z2, TpX[n] := X[n− p]. (3.66)

Recall that, for wavelet bases, the feature extractor Γ has been defined in (3.26). Then,
(3.65) implies, for any j ∈ N \ {0}, k ∈ {0 . . 3}, and n ∈ Z2,

∀u ∈ R2,
∣∣Γ (j)

k, n(TuX)
∣∣ =

∣∣Γ (j)
k, n(X)

∣∣. (3.67)

One of the main drawbacks of the discrete wavelet transform is that (3.67) is not
satisfied, due to the subsampling operation in (3.24). To understand this phenomenon,
we consider, as in Section 3.2.3, the one-dimensional setting. Let x ∈ l2R(Z2) denote an
input sequence corresponding to a continuous signal f ∈ L2

R(R). Similarly to (3.45), we
have, for any n ∈ Z, x[n] := (f ∗ ϕ)(n), where ϕ ∈ L2

R(R) denotes the 1D scaling function
corresponding to the QMFs (h, g). We respectively denote by c(j) and d(j) the sequence
of scaling and wavelet coefficients at scale j ∈ {1 . . J}, computed, similarly to (3.24), by

c(j+1) =
(
c(j) ∗ h

)
↓ 2 and d(j+1) =

(
c(j) ∗ g

)
↓ 2, (3.68)

initialized at c(0) := x. Now, we translate x by one unit, and denote by c′(j) and d′(j) the
corresponding scaling and wavelet coefficients at scale j. Then, the sequences of wavelet
coefficients d(j) and d′(j) satisfy, for any n ∈ Z,

d(j)[n] =
(
f ∗ ψ(j)

0
)
(2jn) and d′(j)[n] =

(
f ∗ ψ(j)

0
)
(2jn− 1), (3.69)

where ψ(j)
0 is a dilated version of the mother wavelet ψ by a factor 2j . We notice that d(j)

and d′(j) are obtained by uniformly sampling f ∗ψ(j)
0 on two non-overlapping grids. Since

ψ
(j)
0 is high-frequency, the two sequences of wavelet coefficients may vary significantly.

Actually, their energy
∥∥d(j)∥∥2

2 and
∥∥d′(j)∥∥2

2 may be completely different. To get a better
intuition about this, consider an example where f ← δ is chosen to be the unit impulse
signal,1 Then, (3.69) becomes

d(j)[n] = ψ
(j)
0 (2jn) = 2− j

2 ψ(n); (3.70)

d′(j)[n] = ψ
(j)
0 (2jn− 1) = 2− j

2 ψ
(
n− 2−j), (3.71)

where ψ denotes the mother wavelet. Figure 3.3a illustrates this situation with j = 2.
We can relate this phenomenon to Shannon’s sampling theorem (Shannon, 1949). It
implies that reconstructing a high-frequency input from a partial subsampled signal leads
to aliasing artifacts if not handled carefully. More information about shift invariance can
be found in a review by Kingsbury and Magarey (1998).

On the other hand, if x is shifted by 2jp units (p ∈ Z), then a similar reasoning shows
that d(j) is shifted by p units. Therefore, a partial form of shift equivariance exists, when
inputs are shifted by a multiple of the subsampling factor.

In the next section, we explore an approach designed to solve the problem of shift insta-
bility, by considering complex-valued redundant frames, instead of real-valued orthonormal
bases. As we shall see, the proposed solution naturally solves another weakness of wavelet
bases: the lack of directional selectivity.

1Technically, δ /∈ L2
R(R). However, the observed phenomenon holds for L2 input signals.

47



CHAPTER 3. BACKGROUND ON WAVELET ANALYSIS

(a) Real-valued framework (b) Complex-valued framework

Figure 3.3. Illustration of aliasing effects: outputs of 1D FWT (a) and DT-CWT (b), for a
discrete impulse signal and a shifted version by one pixel. In the real-valued case (a), the analytic
expressions of d(j)[n] and d′(j)[n] are provided in (3.70) and (3.71), respectively. The plots have
been drawn for j = 2, using a Daubechies wavelet with q = 6 vanishing moments.

3.3 Complex Redundant Discrete Wavelet Transforms

We saw in Section 3.2.6 that image representations in a wavelet basis are unstable to
small shifts. Moreover, since the basis functions are tensor products of one-dimensional
scaling function and wavelet, FWT performs well at detecting horizontal and vertical fea-
tures, but fails at discriminating intermediate orientations. The third mother wavelet
Ψ3 := ψ⊗ψ presents a checkerboard pattern (see Figure 3.2), and as such is not properly
oriented. To overcome the lack of directional selectivity and shift invariance, Kingsbury
(1999) introduced a complex-valued, discrete wavelet decomposition in a redundant tight
frame generated by 6 oriented mother wavelets. The decomposition is performed with a
fast algorithm based on a dual-tree filter bank decomposition, called the dual-tree complex
wavelet transform (DT-CWT). As discussed in Section 3.1.3, redundancy in frames can
be exploited to improve the sparsity of image representations. The combined effect of
overcompleteness with shift invariance is known to produce more suitable image represen-
tations, as stated by Pustelnik et al. (2016) in the context of inverse problems.

The main ideas for DT-CWT have been reviewed by I. W. Selesnick et al. (2005), and
are summarized below. Section 3.3.1 provides some intuition behind the concept of com-
plex analytic wavelets. Then, Section 3.3.2 introduces the complex wavelet tight frame on
which input images are decomposed, and Section 3.3.3 describes the DT-CWT algorithm,
taking advantage of standard, separable FWT decompositions. Finally, Section 3.3.4 ex-
tends the concept of wavelet packets to the dual-tree framework.

3.3.1 General Intuition

The Fourier basis defined in (3.12) satisfies both directional selectivity and shift invariance
(3.65), with B ← BN , where N ∈ N \ {0} denotes the support size of input images.
According to I. W. Selesnick et al. (2005), these properties are linked to the basis functions
being analytic. It means that their Fourier transform is supported in one half of the
frequency axis. In the 2D setting, the Fourier basis functions have their Fourier support
localized in one quadrant of the frequency plane. More precisely,

∀n ∈ BN , Ên = δθn , (3.72)
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where En ∈ IN satisfies (3.12), and δθn denotes the 2D unit impulse function at frequency
θn := 2π(n/N + p), where p ∈ Z2 is chosen such that θn ∈ [−π, π]2. In the above expres-
sion, we have considered the 2D discrete-time Fourier transform, defined, analogously to
(3.19), by

X̂(ω) :=
∑

n∈Z2

X[n]e−i⟨ω, n⟩ ∀ω ∈ [−π, π]2 . (3.73)

Can this idea be transposed to wavelet bases? According to Figure 3.2, the basis
functions E(j)

k, n (discrete framework) or Ψ (j)
k, n (continuous framework) have their energy

concentrated in four symmetric square regions of size π/2j . Now, the idea is to break
symmetry by “shutting down” three of these four square regions. This can be done by
considering a couple of one-dimensional complex scaling function and wavelet (ϕ, ψ) ∈
L2
C(R)× L2

C(R) satisfying

supp ϕ̂ ⊂ R+ and supp ψ̂ ⊂ R+. (3.74)

Then, building tensor products of ϕ and ψ, as done in (3.42), yields 2D oriented wavelets
Ψ1−3 whose energy is mainly located on the upper-right quadrant of the Fourier domain,
as evidenced in Figure 3.4. We will then qualify Ψ1−3 as analytic.2

In Section 3.3.2, we will see that, under certain conditions, (ϕ, ψ) generates a tight
redundant frame of L2

C(R2). Then, Section 3.3.3 explains how to build a dual-tree filter
bank and how to decompose an input function F ∈ L2

C(R2) in the wavelet tight frame.

3.3.2 Complex Wavelet Tight Frames

Let (h[0], g[0]) and (h[1], g[1]) denote two pairs of QMFs. We respectively denote by(
ϕ[0], ψ[0]) and

(
ϕ[1], ψ[1]) the pairs of 1D scaling function and wavelet characterized by

(h[0], g[0]) and (h[1], g[1]), as explained in Remark 3.1. Moreover, we assume that ψ[0] and
ψ[1] form a Hilbert transform pair:

ψ[1] = H
(
ψ[0]). (3.75)

where H : L2
R(R)→ L2

R(R) denotes the Hilbert transform, defined, for any ξ ∈ R, by

ψ̂[1](ξ) := −i sgn(ξ) ψ̂[0](ξ). (3.76)

We consider the following complex scaling function and wavelet:

ϕ := 1√
2
(
ϕ[0] + i ϕ[1]) and ψ := 1√

2
(
ψ[0] + i ψ[1]). (3.77)

Then, ϕ and ψ are analytic (3.74). We now build complex 2D wavelets, in a similar fashion
as (3.42):

Ψ↗
1 := ϕ⊗ ψ; Ψ↗

2 := ψ ⊗ ϕ; Ψ↗
3 := ψ ⊗ ψ; (3.78)

Ψ↘
1 := ϕ⊗ ψ∗; Ψ↘

2 := ψ ⊗ ϕ∗; Ψ↘
3 := ψ ⊗ ψ∗, (3.79)

2There are several possible extensions to the concept of analytic signals in higher dimensions. In this
thesis, “analytic” means that the Fourier transform is located in the top-right quadrant (and, by abuse
of language, in any of the four quadrants). It is worth noticing that Havlicek et al. (1997) uses a less
restrictive definition, involving the half-plane of positive x-values.
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where ∗ denotes the complex conjugate. Each wavelet corresponds to a specific orientation,
as shown in Figure 3.4. We also consider their complex conjugates, respectively denoted
by Ψ↙

k on the one hand, and Ψ↖
k on the other hand. In these notations, the arrow points

to the Fourier quadrant in which energy is concentrated. Finally, we denote by Ψ↗(j)
k, n the

translated and dilated version of Ψ↗
k , according to (3.37). We do the same for the three

other Fourier quadrants.
Similarly to (3.29) and (3.41), let V ⊂ L2

C(R2) denote an initial approximation space
for continuous input images:

V := span(Φn)n∈Z2 ⊂ L2
C(R2), (3.80)

and Ψ (J) denote the corresponding wavelet basis (3.41), where the mother real-valued
scaling function Φ and wavelets Ψ1−3 satisfy (3.42) with (ϕ, ψ)←

(
ϕ[0], ψ[0]) as introduced

above. We then have the following fundamental property. For any k ∈ {1 . . 3} and
j ∈ {1 . . J}, the detail subspace V(j)

k (3.39) is also spanned a the four-time redundant
complex family:

V(j)
k = span

(
Ψ

↗(j)
k, n , Ψ

↘(j)
k, n , Ψ

↙(j)
k, n , Ψ

↖(j)
k, n

)
n∈Z2 , (3.81)

which has the tight frame property. Thus, for any F ∈ L2
C(R2), the orthogonal projection

of F on V(j)
k , denoted by Π(j)

k F , can be recovered from the feature maps of complex wavelet
coefficients:

Π
(j)
k F = 1

4
∑

n∈Z2

(
D↗(j)

k [n]Ψ↗(j)
k, n + D↘(j)

k [n]Ψ↘(j)
k, n

+D↙(j)
k [n]Ψ↙(j)

k, n + D↖(j)
k [n]Ψ↖(j)

k, n

)
, (3.82)

where D↗(j)
k , D↘(j)

k , D↙(j)
k , D↖(j)

k ∈ l2C(Z2) satisfy, similarly to (3.44) and (3.45),

∀n ∈ Z2, D↗(j)
k [n] =

〈
F, Ψ

↗(j)
k, n

〉
=
(
F ∗ Ψ↗(j)

k, 0
∗)

(2jn). (3.83)

Then, the family

Ψ
(J)
C :=

J⊎
j=1

3⊎
k=1

(
Ψ

↗(j)
k, n , Ψ

↘(j)
k, n , Ψ

↙(j)
k, n , Ψ

↖(j)
k, n

)
n∈Z2 ⊎

(
4Φ(J)

n

)
n∈Z2 (3.84)

is a tight frame of V. In this expression, Φ(J)
n ∈ L2

R(R2) denotes the translated and dilated
version of the (real-valued) mother scaling function Φ at the coarsest scale J . Unlike
the orthonormal basis Ψ (J) defined in (3.41), the elements of Ψ

(J)
C are no longer linearly

independent, but any continuous input image F ∈ V can be perfectly reconstructed from
this multiresolution representation. Note that, when F is real-valued, D↙(j)

k and D↖(j)
k

are the respective complex conjugates of D↗(j)
k and D↘(j)

k . Therefore, in practice we only
need to compute and store half of the wavelet coefficients to reconstruct the signal.

In the standard wavelet basis (3.41), each atom Ψ
(j)
k, n has its energy concentrated in four

symmetric square windows in the Fourier domain, as shown in Figure 3.2. In the complex
frame (3.84) however, each of the four windows is assigned to a specific atom Ψ

↗(j)
k, n , Ψ↘(j)

k, n ,
Ψ

↙(j)
k, n or Ψ↖(j)

k, n . The wavelets are therefore analytic and oriented. Figure 3.4 illustrates
this situation.
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3.3.3 Dual-Tree Filter Bank Decomposition

Let F ∈ L2
R(R2) denote a continuous input image. To compute the feature maps of complex

wavelet coefficients D↗(j)
k and D↘(j)

k ∈ l2C(Z2) (3.83), Kingsbury (1999) developed the DT-
CWT algorithm, which is described in this section. Extending this result to F ∈ L2

C(R2) is
possible; however, for the purpose of conciseness, the focus of this section is on real-valued
inputs.

Four Parallel FWTs. DT-CWT is done by performing four parallel FWTs, using four
distinct sets of 2D real-valued scaling function and wavelets, which are tensor products of(
ϕ[0], ψ[0]) and

(
ϕ[1], ψ[1]). More precisely, for any m := 2i+ i′ ∈ {0 . . 3}, we consider:

Φ[m] := ϕ[i] ⊗ ϕ[i′]; Ψ
[m]
1 := ϕ[i] ⊗ ψ[i′]; Ψ

[m]
2 := ψ[i] ⊗ ϕ[i′]; Ψ

[m]
3 := ϕ[i] ⊗ ϕ[i′]. (3.85)

Then, the wavelets Ψ↗(j)
k, n and Ψ↘(j)

k, n from the tight frame Ψ
(J)
C introduced in (3.84) satisfy

the following expression:Ψ↗(j)
k, n

Ψ
↘(j)
k, n

 = 1
2


1 −1

1 1


Ψ [0](j)

k, n

Ψ
[3](j)
k, n

+ i

1 1

1 −1


Ψ [2](j)

k, n

Ψ
[1](j)
k, n


 , (3.86)

where Ψ [m](j)
k, n ∈ L2

R(R2) satisfies (3.37) with Ψk ← Ψ
[m]
k .

In practice, each FWT is computed with a 2D FB decomposition as described in
Section 3.2.1. More specifically, for any m := 2i+ i′ ∈ {0 . . 3}, we use the 2D filter bank
G[m] :=

(
G[m]

k

)
k∈{0..3} defined, similarly to (3.20), by

G[m]
0 := h[i] ⊗ h[i′]; G[m]

1 := h[i] ⊗ g[i′]; G[m]
2 := g[i] ⊗ h[i′]; G[m]

3 := g[i] ⊗ g[i′], (3.87)

where the QMFs (h[0], g[0]) and (h[1], g[1]) have been introduced in Section 3.3.2. For each
m ∈ {0 . . 3}, the m-th FWT is initialized with

D[m](0)
0 ← X[m], (3.88)

where X[m] ∈ l2R(Z2) encodes the linear projection of F on

V [m] := span
(
Φ[m]

n

)
n∈Z2 , (3.89)

as in (3.43) and (3.45). Then, the discrete wavelet coefficients are computed using the
FB decomposition described in Section 3.2.1 with G ← G[m]. The corresponding feature
maps are denoted by D[m](j)

k ∈ l2R(Z2) and satisfy (3.44) with Ψ
(j)
k, n ← Ψ

[m](j)
k, n .

Finally, we use the relation (3.77) between real and complex scaling functions /
wavelets, as well as the tensor product constructions (3.78), (3.79) and (3.85), which
yields the following expression of the complex feature maps D↗(j)

k and D↘(j)
k defined in

(3.83): D↗(j)
k

D↘(j)
k

 = 1
2


1 −1

1 1


D[0](j)

k

D[3](j)
k

− i
1 1

1 −1


D[2](j)

k

D[1](j)
k


 , (3.90)

Expression (3.90) provides a fast computation of the complex wavelet coefficients, using
separable convolutions and feature map combinations.
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Shift Invariance. Due to the near-analytic property of DT-CWT, the complex wavelet
feature maps defined in (3.83), and computed following (3.90), are nearly shift invariant,
in contrast to standard FWT. Back to the one-dimensional situation, we can show that
the modulus of the complex wavelet ψ (3.77) provides a smooth envelope for the real
wavelet ψ[0]. Consider again the example from Section 3.2.6, taking as inputs two shifted
unit impulse signals. The corresponding sequences of wavelet coefficients d(j) and d′(j)

respectively satisfy (3.70) and (3.71), with ψ being the complex analytic mother wavelet.
Then, if j is large enough, we get

∣∣d′(j)[n]
∣∣ ≈ ∣∣d(j)[n]

∣∣ for any n ∈ Z. Figure 3.3 illustrates
both FWT and DT-CWT situations.

Half-Sample Delay Condition. A necessary and sufficient condition for ψ to be ana-
lytic (3.76) is that (h[0], h[1]) (low-pass filters) must satisfy the half-sample delay condition
(I. Selesnick, 2001; Yu and Ozkaramanli, 2005):

∀ω ∈ [−π, π] , ĥ[1](ω) = e−i ω
2 ĥ[0](ω). (3.91)

However, if one want to use finitely-supported filters, like those associated to the Daubechies
wavelets, (3.91) cannot be exactly satisfied. In this case, approximations are therefore
needed. Moreover, we want both filters to have nearly equal support size and number of
vanishing moments. In addition, (3.16)–(3.18) must be satisfied for both sets of filters.
Several approaches have been proposed for this purpose. In particular, the quarter-shift
(Q-shift) solution (Kingsbury, 2000, 2003) yields two low-pass filters which are flipped
with respect to each other: h[1] = h[0]. Designing such filters must be done carefully
to approximately meet the half-sample delay condition. This solution is well-suited for
orthogonal filters with arbitrarily large support.

Remark 3.6 (first decomposition stage). In practice, F is unknown; thus we cannot
compute X[0−3] as introduced above. Instead, we only have one discrete input image
X := X[0], encoding the linear projection of F onto V in the orthonormal basis (Φn)n∈Z2 .
Therefore, for each m ∈ {0 . . 3}, the m-th FWT is initialized with

D[m](0)
0 ← X, (3.92)

which is different from the “perfect” initialization (3.88). Unfortunately in this context,
the complex feature maps obtained with (3.90) only become near-analytic when j goes
to ∞. In order to get near-analytic image representations from the first iterations, I. W.
Selesnick et al. (2005) came along with the following solution. The first stage of FWT is
computed with a specific set of filters, denoted by (h̃[0], g̃[0]) and (h̃[1], g̃[1]), satisfying the
one-sample delay condition:

∀n ∈ Z, h̃[1][n] := h̃[0][n− 1]. (3.93)

Unlike the half-sample delay condition (3.91), implementing (h̃[1], g̃[1]) from (h̃[0], g̃[0]) is
straightforward.

Discrete Frames. We consider the following family of complex, near-analytic basis
functions:

E(J)
C :=

J⊎
j=1

3⊎
k=1

(
E↗(j)

k, n , E↘(j)
k, n , E↙(j)

k, n , E↖(j)
k, n

)
n∈Z2 ⊎

(
4 E(J)

0, n

)
n∈Z2 , (3.94)
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Figure 3.4. Top: real part of the discrete basis functions E↗(j)
k, 0 , E↘(j)

k, 0 (3.95) with depth j = 2
and k = 1 . . 3, computed with Q-shift orthogonal QMFs of length 10. Middle: real part of the
continuous basis functions (wavelets) Ψ↗(j)

k, 0 , Ψ↘(j)
k, 0 (3.86). Bottom: modulus of the discrete-time

Fourier transform of E↗(j)
k, 0 and E↘(j)

k, 0 (the origin is located at the center).

where we have denoted, analogously to (3.86),E↗(j)
k, n

E↘(j)
k, n

 = 1
2


1 −1

1 1


E[0](j)

k, n

E[3](j)
k, n

+ i

1 1

1 −1


E[2](j)

k, n

E[1](j)
k, n


 , (3.95)

where, for each m ∈ {0 . . 3}, E[m](j)
k, n ∈ l2R(Z2) denote the atoms of the m-th wavelet basis,

satisfying (3.23) and (3.25) with G ← G[m] such as introduced in (3.87). Besides, in
(3.94), we have denoted E(J)

0, n := E[0](J)
0, n for any n ∈ Z2 (coarsest scale). We remind that

real-valued wavelet bases have been introduced in Section 3.2.1. Expression (3.90) implies
that 〈

X, E↗(j)
k, n

〉
:= D↗(j)

k [n] ∀j, k, n, (3.96)
as well as the three other quadrants. Then, we can get a close reconstruction of any
input image X ∈ l2R(Z2) in the family E(J)

C , using the above complex wavelet coefficients.
Besides, an M -term approximation of X in E(J)

C can be obtained by computing the M
largest coefficients as in (3.26), with a similar decay rate in O(1/M). As for Figure 3.2
in the case of orthogonal wavelet basis, Figure 3.4 illustrates the redundant discrete and
continuous basis functions in the DT-CWT framework.

3.3.4 The Dual-Tree Complex Wavelet Packet Transform

The dual-tree complex wavelet packet transform (DT-CWPT), introduced by Bayram and
I. W. Selesnick (2008), is an extension of DT-CWT to the wavelet packet framework.
Similarly to Section 3.2.5, the complex detail subspaces

J↗(j)
k := span

(
E↗(j)

k, n

)
n∈Z2 and W↗(j)

k := span
(
Ψ

↗(j)
k, n

)
n∈Z2 (3.97)

can be split into four subspaces with decreased spatial localization and increased frequency
localization. The exact same reasoning applies to the three other quadrants of the Fourier
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domain. To achieve this goal, it would be tempting, for each m ∈ {0 . . 3}, to decompose
the dual-tree feature map D[m](j)

l using the FB G[m] introduced in (3.87), as done in the
1D case by Z.-M. Xie et al. (2004). Like (3.63), we would get

D[m](j+1)
4l+k =

(
D[m](j)

l ∗G[m]
k

)
↓ 2. (3.98)

However, this leads to non-analytic solutions, as explained by Bayram and I. W. Selesnick
(2008). To keep the near-analytic properties of standard DT-CWT, these authors proposed
to apply a unique filter bank G ∈

(
l2R(Z2)

)4 to each high-frequency feature map D[m](j)
l ,

for any j ≥ 2 and any l ≥ 1. Then, (3.98) becomes

D[m](j+1)
4l+k =

(
D[m](j)

l ∗Gk

)
↓ 2. (3.99)

Besides, after the first decomposition stage using the high-pass filters g̃[0] and g̃[1], the
roles must be switched between (h[0], g[0]) and (h[1], g[1]). Finally, for any decomposition
depth j ∈ {1 . . J} and output channel l ∈

{
1 . . 4j − 1

}
, the feature maps of complex

wavelet packet coefficients at scale 2j , denoted by D↗(j)
l ,D↘(j)

l ∈ l2C(Z2), are computed
with linear combinations between the real-valued feature maps D[m](j)

l (m ∈ {0 . . 3}),
similarly to (3.90). In the pseudo-local cosine framework (fully-decomposed binary tree),
we therefore getD↗(J)

l

D↘(J)
l

 = 1
2


1 −1

1 1


D[0](J)

l

D[3](J)
l

− i
1 1

1 −1


D[2](J)

l

D[1](J)
l


 . (3.100)

Moreover, the families of basis functions

E(J)
C :=

4J −1⊎
l=1

(
E↗(J)

l, n , E↘(J)
l, n , E↙(J)

l, n , E↖(J)
l, n

)
n∈Z2 ⊎

(
E(J)

0, n

)
n∈Z2 ; (3.101)

Ψ
(J)
C :=

4J −1⊎
l=1

(
Ψ

↗(J)
l, n , Ψ

↘(J)
l, n , Ψ

↙(J)
l, n , Ψ

↖(J)
l, n

)
n∈Z2 ⊎

(
Ψ

(J)
0, n

)
n∈Z2 , (3.102)

allow near-exact reconstruction of any input X ∈ J := l2C(Z2) (discrete framework) and
F ∈ V ⊂ L2

C(R2) (3.80) (continuous framework), respectively. In the above expressions,
the complex atoms are computed similarly to (3.95) and (3.86):E↗(J)

l, n

E↘(J)
l, n

 = 1
2


1 −1

1 1


E[0](J)

l, n

E[3](J)
l, n

+ i

1 1

1 −1


E[2](J)

l, n

E[1](J)
l, n


 ; (3.103)

Ψ↗(J)
l, n

Ψ
↘(J)
l, n

 = 1
2


1 −1

1 1


Ψ [0](J)

l, n

Ψ
[3](J)
l, n

+ i

1 1

1 −1


Ψ [2](J)

l, n

Ψ
[1](J)
l, n


 , (3.104)

where E[m](j)
l, n ∈ l2R(Z2) and Ψ

[m](j)
k, n ∈ L2

R(R2) denote the atoms of the m-th pseudo-cosine
orthonormal bases, satisfying (3.62) with G ← G[m] such as introduced in (3.87). More-
over, for the sake of consistency with standard pseudo-cosine bases (3.64), we have denoted
Ψ

(J)
0, n := Φ

(J)
n in (3.102). In this context, DT-CWPT tiles the frequency plane into 4× 4J

overlapping square windows of size π/2J−1. A more detailed analysis of this property will
be conducted in Section 4.6.2.
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3.4 The Wavelet Scattering Transform
In the previous sections, we covered various types of discrete wavelet transforms, im-
plemented as convolutions with separable filters. Introducing redundant complex frames
partly addressed the double issue of directional selectivity and stability to small input
shifts. In this section, we take a step further and consider the more general problem of
stability to deformations. According to Mallat (2012), convolutions with complex and
analytic wavelets are stable to local deformations because their bandwidth is larger at
higher frequencies. However, as seen in Section 3.3.3 in the context of DT-CWT, near
shift invariance only appears at coarser scales. A possible way to extend shift invariance
to higher frequencies is to consider wavelet packet transforms, as covered in Section 3.3.4.
Unfortunately though, increasing the Fourier localization at these frequencies results in
decreasing the stability to deformations.

To tackle this issue, Mallat (2012) came out with an elegant solution, which computes
cascading wavelet convolutions followed by nonlinear operations. The corresponding fea-
ture extractor is called a wavelet scattering transform. It produces nearly translation-
invariant image representations which are stable to deformations and preserve high fre-
quency information. The wavelet scattering transform shares the structure of a multilayer
convolutional network (Bruna and Mallat, 2013). We therefore leave the framework intro-
duced in Section 3.1.1 and enter one in which wavelets meet deep learning.

3.4.1 Lipschitz-Continuity to Diffeomorphisms

Another important property of feature extractors for image classification is stability with
respect to small deformations such as translations, rotations, scaling, distortions, etc.
Such deformations can be modelled by an operator Dτ characterized by a diffeomorphism
τ : R2 → R2, transforming any input F ∈ L2

R(R2) into

DτF : x 7→ F (x− τ (x)). (3.105)

Note that the translation operator Th defined by ThF : x 7→ F (x−h) is a particular case,
where τ : x 7→ h is a constant mapping.

In the following, τ is referred to as a displacement field. Considering an operator
Γ : L2

R(R2) → E, where E denotes a given Hilbert space, Bruna and Mallat (2013)
characterize stability to deformations in terms of Lipschitz continuity. In its most general
formulation, the Lipschitz continuity condition supposes the existence of a constant C > 0
such that, for any inputs F, G ∈ L2

R(R2),

∥Γ (G)− Γ (F )∥E ≤ C ∥G− F∥L2 . (3.106)

We now consider the more restrictive case of Lipschitz continuity to deformations. For
any input F ∈ L2

R(R2) and any displacement field τ , applying condition (3.106) with
G← DτF yields (Mallat, 2012)

∥Γ (DτF )− Γ (F )∥E ≤ C ∥F∥L2 ∥∇τ∥∞ , (3.107)

where ∥∇τ∥∞ := supy∈R2 ∥∇τ (y)∥ denotes the maximum deformation amplitude of τ .
The matrix norm ∥∇τ (y)∥ measures the deformation amplitude of τ at any location
y ∈ R2.
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Expression (3.107) implies perfect translation invariance, because the Jacobian matrix
of a constant displacement field is null. However, in many applications (including the
windowed scattering transform as explained below), we only consider nearly shift-invariant
operators; thus Lipschitz continuity as defined above is never met. A more useful approach
consists in restricting (3.107) to deformations with a minimal normalized deformation
amplitude, defined by

ρ(τ ) := ∥∇τ∥∞ / ∥τ∥∞ , (3.108)

with ∥τ∥∞ := supy ∥τ (y)∥2. Imposing ρ(τ ) ≥ ρinf for a certain ρinf > 0, as implicitly
done by Mallat (2012, Corol. 2.15), eliminates “flat” deformations such as translations.
On the other hand, Lipschitz continuity can also be restricted to deformations up to some
maximal amplitude: ∥∇τ∥∞ ≤ υsup.

The modulus of the Fourier transform Γ : F 7→ |F̂ |, where F̂ has been defined in (3.28),
is invariant to global translation but is not Lipschitz continuous to deformations: the con-
stant C in (3.107) becomes arbitrarily large at high frequencies. This has an impact on the
stability of discrete representations in the Fourier basis such as introduced in Section 3.1.2.
According to Mallat (2012), Lipschitz continuity is preserved by increasing the size of the
Fourier support at higher frequencies. This is what happens with multiresolution trans-
forms such as DT-CWT. However, wavelet coefficients only become shift invariant (up to a
phase shift) when j goes to infinity (i.e., at low frequencies), as discussed in Section 3.3.3.
In fact, DT-CWT generally exhibits near-shift equivariance but not invariance at finer
scales. A possible workaround is to further decompose high-frequency feature maps, lead-
ing to the wavelet packet transform—see Section 3.3.4. Unfortunately, we face the same
issue as with the Fourier transform: decreasing the Fourier support of the basis functions
increases the value of C in (3.107). This tradeoff between shift invariance and stability
to deformations at finer scales can be circumvented by considering a multilayer wavelet
transform, as outlined in the next section.

3.4.2 General Principles of the Wavelet Scattering Transform

For the sake of consistency with the rest of the chapter, the wavelet scattering transform
is presented from the DT-CWT perspective, as implemented by Singh and Kingsbury
(2017). However, the concept is much more general and holds for any tight frame wavelet
transform, as explained by Andén and Mallat (2014). In what follows, we consider the
complex wavelet tight frame Ψ

(J)
C as denoted in (3.84).

First-order Scattering Transform. Let F ∈ L2
R(R2) denote a 2D input signal and

J ∈ N \ {0} denote the number of DT-CWT decomposition stages. For a given scale
j ∈ {1 . . J} and orientation k ∈ {1 . . 3}, we consider

F
↗(j)
k := F ∗ Ψ↗(j)

k, 0 ∈ L2
C(R2), (3.109)

where Ψ↗(j)
k, n ∈ L2

C(R2) denotes a scaled and translated version of the mother wavelet Ψ↗
k

such as defined in (3.78). According to (3.83), a uniform sampling of F↗(j)
k at interval 2j

yields the feature map of DT-CWT coefficients D↗(j)
k ∈ l2C(Z2). To improve translation

invariance while keeping stability to deformations, it is possible to convolve F↗(j)
k with

56



3.4. THE WAVELET SCATTERING TRANSFORM

the dilated low-pass filter Φ(J) := 2Φ(J)
0 .3 We get the following operator:

S
↗(j)
k : F 7→

(
F ∗ Ψ↗(j)

k, 0
)
∗ Φ(J)

. (3.110)

However, since F↗(j)
k is high-frequency, filtering with Φ(J) discards almost any information

it contains. The solution proposed by Bruna and Mallat (2013) to avoid this is to apply a
nonlinear pointwise operator on F↗(j)

k before low-pass filtering. The most commonly used
is the modulus operator, pushing the signal energy toward lower frequencies. Therefore, a
significant proportion of the energy is captured by the low-pass filter Φ(J). In this context,
(3.110) is replaced by

S
↗(j)
k : F 7→

(
U

↗(j)
k F

)
∗ Φ(J)

, with U
↗(j)
k : F 7→

∣∣F ∗ Ψ↗(j)
k, 0

∣∣. (3.111)

Then, a uniform sampling of S↗(j)
k F at interval 2J yields first-order scattering coefficients.

Note that the same reasoning holds for the three other Fourier quadrants ↘, ↙ and ↖.
However, since input images are real-valued, we only need to compute the scattering
coefficients for the top-right and bottom-right quadrants (six wavelet orientations).

Multilayer Scattering Transform. From now on, the operators introduced in (3.111)
are respectively denoted, for any Fourier quadrant q1 ∈ {↗, ↘}, scale j1 ∈ {1 . . J} and
orientation k1 ∈ {1 . . 3}, by S[λ1] and U [λ1], where we have introduced the parameter
λ1 := (q1, j1, k1). Even when applying the modulus operator, filtering by Φ(J) results in
a loss of information, which can be recovered by performing DT-CWT on U [λ1]F . We
then get second-order operators, defined by

S[λ] : F 7→
(
U [λ]F

)
∗ Φ(J)

, with U [λ] := U [λ2] ◦ U [λ1] . (3.112)

However, since the modulus operator pushes energy toward lower frequencies, we can
restrict the second-order scattering transform to coarser scales j2 ∈ {j1 + 1 . . J}, with
marginal loss of information. Again, a uniform sampling of S[λ]F at interval 2J yields
second-order scattering coefficients. The principle can be further extended to deeper de-
compositions. However, the energy of S[λ]F has an exponential decay rate with increasing
depth (Waldspurger, 2016). Therefore, in practice the wavelet scattering transform is gen-
erally performed up to the second order. Moreover, the low-frequency features discarded
by the wavelet transform are directly captured by the low-pass filter Φ(J). A uniform
sampling of S[∅]F := F ∗ Φ(J) at interval 2J yields zeroth-order scattering coefficients.

Let P ∈ N\{0} denote the depth of the scattering transform, i.e., the maximum order
of scattering coefficients. For any scattering layer p ∈ {1 . . P}, we consider a family of
parameters satisfying

Λp ⊂
(
{↗, ↘}× {1 . . J} × {1 . . 3}

)p
. (3.113)

Any parameter λ := (λ1, · · · , λp) ∈ Λp defines an “admissible path” of length p along
which to compute the scattering transform S[λ]F , following (3.112). More specifically,
for any p′ ∈ {1 . . p}, λp′ := (qp′ , jp′ , kp′) satisfies

jp′ ∈
{
(jp′−1 + 1) . . J

}
, with j0 := 0. (3.114)

3The factor 2 in front of Φ
(J)
0 is necessary for energy conservation (see Section 3.4.3), due to the

redundancy of the DT-CWT tight frame.
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Note that, if p > J , then Λp is empty. Therefore, we can restrict the scattering transform
to P ≤ J . Besides, by extension we denote Λ0 := {∅} (zeroth-order coefficients). Finally,
we consider the union of all parameters:

Λ(P ) :=
P⊎

p=0
Λp. (3.115)

In practice, the wavelet scattering coefficients, defined as a uniform sampling of S[λ]F
at interval 2J , can be approximated with multiple executions of the DT-CWT algorithm
described in Section 3.3.3, starting from a discrete input X := X[0] ∈ l2R(Z2), encoding
the linear projection of F onto V in the orthonormal basis (Φn)n∈Z2 . The corresponding
feature maps are denoted by Cλ ∈ l2R(Z2) for any λ ∈ Λ(P ), and satisfy

(S[λ]F )
(
2Jn

)
≈ Cλ[n] ∀n ∈ Z2. (3.116)

3.4.3 Properties of the Wavelet Scattering Transform

The scattering properties, which have been proven by Mallat (2012), are summarized in
this section. First, the wavelet scattering transform nearly preserves energy. For any
F ∈ L2

R(R2),

∥ΠVF∥2L2 ≈
1
2

J∑
p=0

∑
λ∈Λp

∥S[λ]F∥2L2 , (3.117)

where ΠV : L2
R(R2)→ V denotes the orthogonal projection onto the subspace V introduced

in (3.80). The factor 1/2 is due to the redundancy of the DT-CWT tight frame. The above
expression is only an approximation because of the constraint (3.114), which implies minor
energy leaks. Moreover, the scattering energy has an exponential decay as a function of the
path length p. This allows limiting the number of scattering layers in practice, generally
restricted to P = 2.

In practice, a discrete scattering transform is performed on a discrete input X ∈ l2R(Z2),
as explained above. We then get

∥ΠVF∥2L2 = ∥X∥22 ≈
1
2

J∑
p=0

∑
λ∈Λp

∥Cλ∥22 . (3.118)

Due to the low-pass filtering by Φ(J), the wavelet scattering transform is nearly trans-
lation invariant:

∥h∥2 ≪ 2J =⇒ ∀λ ∈ Λ(P ), S[λ](ThF ) ≈ S[λ]F. (3.119)

Besides, it is Lipschitz continuous to diffeomorphisms: (3.107) is satisfied with Γ ← S(P ),
where we have defined the scattering transform operator:

S(P ) : F 7→ (S[λ]F )λ∈Λ(P ) , and
∥∥S(P )F

∥∥2 :=
J∑

p=0

∑
λ∈Λp

∥S[λ]F∥2L2 . (3.120)

Note that Lipschitz-continuity to deformations is restricted to displacement fields τ satis-
fying ρ(τ ) ≥ 2−J (3.108) and ∥∇τ∥∞ ≤ 1/2. Moreover, input functions F ∈ L2

R(R2) must
be compactly supported.
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3.4.4 Deep Learning with Wavelet Scattering Networks

In Sections 3.4.2 and 3.4.3, we saw that the wavelet scattering transform satisfies both near-
translation invariance and Lipschitz-continuity to deformations, while preserving high-
frequency information. Moreover, it can be implemented as a multilayer convolution
network. The current section is about deep learning applications for the wavelet scattering
transform, seen as a CNN-like feature extractor.

Bruna and Mallat (2013) employed wavelet scattering coefficients as input for a linear
classifier, in particular a support vector machine (SVM), as described in Section 2.1.3. The
overall architecture, which is fully-deterministic except for the final classifier, is referred
to as a wavelet scattering network (ScatterNet). The authors achieved state-of-the-art
accuracy on handwritten digits and texture datasets. A variation has been proposed by
Sifre and Mallat (2013) to include rotational invariance. In the field of audio signals,
Andén and Mallat (2014) applied the scattering transform along log-frequencies to obtain
transposition-invariant representations. Subsequent adaptations of the wavelet scattering
transform include DT-CWT-based ScatterNets (Singh and Kingsbury, 2017), which is
the variant presented in Section 3.4.2, geometric ScatterNets on Riemanian manifolds
(Perlmutter et al., 2020), and graph ScatterNets (Gama et al., 2019; D. Zou and Lerman,
2020).

ScatterNets achieve excellent results on small image datasets but do not scale well to
more complex ones. According to Oyallon et al. (2017, 2018), this is partly due to non-
geometric sources of variability within classes. Instead, these authors proposed to use scat-
tering coefficients as input for a CNN, showing that the network complexity can be reduced
while keeping competitive performance. More recent work (Zarka et al., 2020) proposed
to sparsify wavelet scattering coefficients by learning a dictionary matrix, and managed to
outperform AlexNet (Krizhevsky et al., 2017). This approach was later extended by the
same team (Zarka et al., 2021), where the authors proposed to learn 1 × 1 convolutions
between feature maps of scattering coefficients and to apply soft-thresholding to reduce
within-class variability. This model reached the classification accuracy of ResNet-18 on
ImageNet-1K. Other works proposed architectures in which the scattering transform is no
longer deterministic. Cotter and Kingsbury (2019) built a learnable ScatterNet. In this
model, feature maps of scattering coefficients are mixed together using trainable weights,
to account for cross-channel filtering as implemented in CNNs—see Chapter 2 (2.48).
Their architecture outperformed VGG networks on small image datasets. Recently, Gau-
thier et al. (2022) introduced parametric ScatterNets, in which the scale, orientation and
aspect ratio of each wavelet filter are adjusted during training. Their approach has proven
successful when trained on limited dataset.

All these papers are driven by the purpose of building ad-hoc CNN-like feature ex-
tractors, implementing well defined mathematical operators specifically designed to meet
a certain number of desired properties. By contrast with freely-trained convolutional net-
works, ScatterNets can be of great interest for tasks where theoretical guarantees are
required, for instance in the medical field. Moreover, standard CNNs contain a large
number of parameters, demanding large datasets for effective training. In cases where the
amount of input data is limited, utilizing more deterministic models like ScatterNets can
enhance generalizability by reducing overfitting. Finally, the wavelet scattering transform
can be seen as a tool to get a better understanding of CNNs from a mathematical point
of view. We will come back to this in Section 3.5.3.
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3.5 Wavelets Meet CNNs, Beyond Scattering Networks

ScatterNets are not the only attempt to combine wavelet analysis and deep neural net-
works. Section 3.5.1 is a brief overview of wavelet-enhanced CNNs. Then, in Section 3.5.2,
we review the main theoretical studies on CNNs from the perspective of signal processing,
including—but not limited to—ScatterNets. Finally, Section 3.5.3 is a wrap-up of the two
background chapters, introducing the main contributions of this thesis.

3.5.1 Wavelet-Based Feature Extraction and CNNs

In a general machine learning context, discrete wavelet, wavelet packet and Gabor-like
transforms have been widely used as feature extractors for signal, image and texture
classification (Laine and Fan, 1993; Learned and Willsky, 1995; Pittner and Kamarthi,
1999; Yen, 2000; Subasi, 2007; C.-C. Liu and Dai, 2009; Khushaba et al., 2011; Dua et al.,
2012; T. Li and Zhou, 2016).

In the deep learning framework, wavelet-based CNNs generally pursue one of the two
following goals: improving classification performance, and / or reducing the model com-
plexity. The central concept is to introduce prior assumptions about the network’s be-
havior, considering the tendency of CNNs to spontaneously learn wavelet-like patterns, as
explained in Section 2.4.1. Three main approaches are identified: (1) replace or comple-
ment freely-trained convolution kernels by wavelet or Gabor filters; (2) preprocess input
data with wavelet transforms; (3) use wavelet transforms as a downsampling strategy in
pooling layers.

Within the first scenario, Chang and Morgan (2014) proposed to initialize freely-trained
convolution kernels with wavelet or Gabor functions, and let the network adjust the weights
during training. Alternatively, additional channels performing discrete wavelet transform
can be stacked to an existing CNN architecture (Fujieda et al., 2017; M. Liu et al., 2021).
In a related spirit, some models include deterministic Gabor filters in parallel to freely-
trained layers (Sarwar et al., 2017), freely-trained convolution kernels modulated by ori-
ented Gabor filters (Luan et al., 2018), linear combinations of discrete cosine transforms
(Ulicny et al., 2019), wavelet packet transforms (P. Liu et al., 2019), or parametric Gabor
filters (Alekseev and Bobe, 2019; Pérez et al., 2020).

The second approach, data preprocessing, takes advantage of the sparsity and stability
of wavelet representations to achieve equivalent or superior accuracy on image classifica-
tion, with possibly reduced model complexity. The method proposed by Williams and
R. Li (2016) consists in transforming input images through FWT (see Section 3.2.1), and
using a specific CNN for each feature map of wavelet coefficients. Besides, as explained in
Section 3.4.4, Oyallon et al. (2018) used wavelet scattering coefficients as input for a CNN.
Finally, L. Liu et al. (2020) exploited the properties of wavelet representations to build a
dual-branch network, using dense convolutions for local features and dilated convolutions
for large receptive fields.

Regarding wavelet pooling, Williams and R. Li (2018) proposed the use of fast wavelet
transform as an alternative downsampling strategy to standard average pooling. A similar
approach has been undertaken by Lu et al. (2018), using DT-CWT instead of FWT.
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3.5.2 Theoretical Studies in CNNs

This section provides an overview of theoretical studies on CNNs. Notably, several pa-
pers have leveraged wavelet theory to deduce insights into deep learning models. The
section begins by focusing on invariance, equivariance, and adversarial robustness, before
broadening the discussion to encompass other important theoretical aspects of CNNs.

Invariance, Equivariance and Adversarial Robustness. Several papers analyze
invariance properties of CNN-related feature extractors. Extensive studies related to the
original wavelet scattering transform (see Section 3.4.3) have been proposed by Mallat
(2012, 2016). Besides, Czaja and W. Li (2019, 2020) worked on a model variant based
on uniform covering frames—i.e., frames splitting the frequency domain into windows of
roughly equal size. This is related to the pseudo-cosine frames such as described in Sec-
tions 3.2.5 and 3.3.4. Beyond the scattering transform, Wiatowski and Bölcskei (2018)
considered a wide variety of feature extractors involving convolutions, Lipschitz-continuous
non-linearities and pooling operators. These authors showed that outputs become more
translation invariant with increasing network depth. Moreover, Weiler and Cesa (2021)
examined equivariant properties of steerable CNNs with respect to the two-dimensional
Euclidean group. They highlighted the importance of preventing aliasing when applying
the theoretical results in practice. Finally, a series of papers addressed the question by
modeling CNNs as convolutional kernel networks (CKNs) (Mairal et al., 2014). In partic-
ular, Bietti and Mairal (2019a) proved that certain classes of CNNs are contained into the
reproducing kernel Hilbert space (RKHS) of a multilayer convolutional kernel representa-
tion. As such, stability metrics are estimated, based on the RKHS norm which is difficult
to control in practice. Subsequent studies were conducted in this framework, including
Bietti and Mairal (2019b), Scetbon and Harchaoui (2020), and Bietti (2022).

Other works explored the stability of CNNs to adversarial perturbations in a more
generic sense, a subject which is also addressed by Szegedy et al. (2014). Stability is often
measured in terms of Lipschitz continuity, satisfying (3.106) in its most general formu-
lation. Virmaux and Scaman (2018) showed that an exact computation of the Lipschitz
bound C0 in CNNs—i.e., smallest value of C satisfying (3.106)—is an NP hard problem,
and proposed an algorithm to estimate this quantity in practice. Moreover, Balan et al.
(2018) and D. Zou et al. (2020) proposed an estimation of the Lipschitz bound for generic
models involving channel aggregation, as found in standard CNNs. A recent study by
Pérez et al. (2020) proposed to control the Lipschitz constant of various CNN architec-
tures by introducing discretized Gabor filters, for which a closed form expression of the
Lipschitz constant is established.

Other Theoretical Aspects. For the sake of completeness, we review other theoretical
aspects of CNNs. Mallat and Waldspurger (2015) proposed a more general formulation of
ScatterNets by considering trainable unitary operators instead of wavelet transforms. Us-
ing a probabilistic framework, they showed that maximizing class separation, as explained
in Section 2.4, is equivalent to minimizing the expected decay of scattering coefficients
across the network—i.e., in (3.117), minimizing the decay of ∑λ∈Λp

∥S[λ]F∥2L2 when p
increases. For the specific case of wavelet operators, Waldspurger (2016) proved that,
under additional conditions, the scattering coefficients decay exponentially. Regarding
complex convolutions, Tygert et al. (2016) showed that, under specific conditions on their
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filters, complex-valued convolutional networks (using the modulus as a nonlinear pool-
ing operator) can compute multiscale windowed power spectra, wavelet or wavelet packet
moduli of locally-stationary input sequences.

On unrelated topics, Kuo (2016) proposed a study on pointwise nonlinear activation
functions in CNNs. In a paper by J. C. Ye et al. (2018), a framework based on deep
convolutional framelets is introduced. They established several theoretical results such
as energy compaction, perfect reconstruction conditions under ReLU, number of channels
and network depth depending on the signal intrinsic sparsity, role of skip connections such
as found in ResNet.

Another desirable property that has been identified for CNNs is orthogonality of con-
volution kernels. According to Rodríguez et al. (2017) and Bansal et al. (2018), orthog-
onality improves training efficiency by enhancing robustness and decorrelating features.
To promote near-orthogonality, J. Wang et al. (2020) proposed to regularize training with
orthogonality constraints on convolution layers. Recently, Achour et al. (2022) provided
theoretical insights into orthogonal CNNs, including stability guarantees for the aforemen-
tioned regularization strategy.

Furthermore, a class of convolutional models based on the phase harmonics, a nonlinear
operator adjusting the phase of complex coefficients, has been developed by Mallat et al.
(2020), S. Zhang and Mallat (2021), and Brochard et al. (2022). In particular, Mallat et al.
(2020) showed that this operator admits a dual representation similar to rectifiers (e.g.,
ReLU), when the convolution kernels are well-localized in the Fourier domain. Recently,
Sander et al. (2022) investigated whether neural ordinary differential equations in the
continuous framework and ResNets in the discrete framework exhibit similar behavior.

3.5.3 What is Missing?

As mentioned previously, there is an abundant literature on the properties of CNNs, many
of which being linked to wavelet analysis. However, some questions remain unanswered to
date. In this section, we outline the main motivations for the contribution chapters that
follow.

ScatterNets are specifically designed to meet some desired properties. As deep learning
architectures, they are sometimes used as explanatory models for standard, freely-trained
networks. However, unlike the latter models, they implement convolutions with complex
filters and take advantage of the modulus as a nonlinear operator. Therefore, as implied
by Tygert et al. (2016), there is no exact correspondence between ScatterNets and real-
valued CNNs. Put differently, a link is missing: can complex convolutions and moduli
be adapted to more standard models, in which convolutions with real-valued kernels are
followed by pointwise activation functions and nonlinear downsampling operators such as
max pooling?

In most studies, invariance properties are obtained for continuous signals. Whereas
CNNs can be mathematically described in the continuous framework, the feature maps
computed at their hidden and output layers are actually discrete sequences, which can
be considered as a sampling of the continuous outputs at fixed intervals. An example is
provided in (3.116) for scattering coefficients. At each convolution and pooling layers, the
sampling interval is increased, resulting in a loss of information. Unfortunately, this may
greatly affect shift invariance due to aliasing effects. Section 3.2.6 provides an explanation
for such a phenomenon, in the context of standard FWT. Convolutions with complex
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and oriented filters may avoid this behavior, as explained in Section 3.3.3. Yet again,
conventional architectures do not implement such filters. Actually, shift instability in
CNNs is a well known phenomenon, as discussed in Section 2.4.2. This is what motivated
R. Zhang (2019) to design antialiased convolutional networks. Another limitations of the
aforementioned studies is the lack of consideration for max pooling.

Chapter 4 specifically addresses these questions. Our work seeks evidence that shift
invariance properties—which is established for DT-CWPT and ScatterNets—are, to some
extent, embedded in standard, freely-trained architectures. In particular, we show that
max pooling serves as a “demodulator” for real-valued, high-frequency feature maps, anal-
ogous to the role played by the modulus operator for complex feature maps in ScatterNets.
However, as will be highlighted, the discrete nature of CNNs is a critical limitation to reach
proper shift invariance. Depending on the filter’s frequency and orientation, instabilities
may persist. For this reason, in Chapter 5 we explore the possibility of adding an imag-
inary part to the real-valued feature maps, then replacing the max pooling layer by a
modulus. By doing so, we establish a one-to-one connection between complex moduli
such as found in ScatterNets and real max pooling such as implemented in freely-trained
models.

63



Chapter 4

Shift Invariance of Max Pooling
Feature Maps in CNNs

Understanding the mathematical properties of deep convolutional neural net-
works (CNNs) remains a challenging issue today. On the other hand, wavelet and
multi-resolution analysis are built upon a well-established mathematical frame-

work. We refer the reader to Chapters 2 and 3 for a general overview of both fields.
There is a broad literature revealing strong connections between these two paradigms,

as discussed in Sections 3.4 and 3.5. Inspired by this line of research, the present chapter
extends existing knowledge about CNN properties. Specifically, we assess the shift in-
variance of max pooling feature maps through both theoretical and empirical approaches
in the context of image classification. When trained on image datasets such as MNIST,
CIFAR-10 or ImageNet, CNNs tend to learn parameters in the first layer that closely
resemble oriented Gabor filters, as outlined in Section 2.4.1. By leveraging the properties
of discrete Gabor-like convolutions, we establish conditions under which the feature maps
computed by the subsequent max pooling operator approximate the modulus of complex
Gabor-like coefficients, in which case they are stable with respect to small input shifts.
We then compute a probabilistic measure of shift invariance for these layers. More specif-
ically, we show that some filters, depending on their frequency and orientation, are more
likely than others to produce stable image representations. We experimentally validate
our theory by considering a deterministic feature extractor based on the dual-tree wavelet
packet transform, a particular case of discrete Gabor-like decomposition. We demonstrate
a strong correlation between shift invariance on the one hand and similarity with complex
modulus on the other hand.

This chapter is mainly adapted from the following preprint: H. Leterme, K. Polisano,
V. Perrier, and K. Alahari (2022). “On the Shift Invariance of Max Pooling Feature Maps
in Convolutional Neural Networks”. arXiv: 2209.11740.

4.1 Motivations and Main Contributions

In many computer vision applications, including classification, input images are trans-
formed through a non-linear operator Γ , generally referred to as a feature extractor—see
Chapter 2 (2.24). The output feature maps, which contain high-level information, can in
turn be fed into deeper feature extractors. Specifically, deep neural networks contain a
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nested sequence
(
Γ (p))

p∈{0..P −1} of nonlinear operators with a large number of trainable
parameters, as detailed in (2.29) for a simple multilayer perceptron (MLP), and (2.57) for
a CNN. The final classifier generally preforms multinomial logistic regression.

As discussed in Section 2.4, CNN feature extractors are expected to retain discriminant
image components while decreasing intra-class variability. In particular, two shifted ver-
sions of a single image should in general receive the same label. As a result, their feature
representations should exhibit a high degree of similarity. In this chapter, we set aside the
broader concept of stability with respect to deformations such as discussed in Section 3.4.1,
and focus on global shift invariance. It has been noted that many CNNs trained on nat-
ural image datasets perform some kind of discrete real-valued Gabor transform in their
first layer, as covered in Section 2.4.1. In other words, images are decomposed through
subsampled convolutions using filters with well-defined frequency and orientation. This
observation, which is exploited in several papers (see Section 3.5.1), reveals the discrimina-
tive nature of CNNs’ first layer. Whether such a layer can extract stable features is partly
addressed by Azulay and Weiss (2019) and R. Zhang (2019). These papers point out that
convolution and pooling layers may greatly diverge from shift invariance, due to aliasing
when subsampling. Section 3.2.6 provides an intuition about the aliasing phenomenon.
In response, recent work (R. Zhang, 2019; Vasconcelos et al., 2020; X. Zou et al., 2023)
introduced antialiased convolution and pooling operators. They managed to increase both
stability and predictive power of CNNs, despite the resulting loss of information.

In the current chapter, we show that, in certain situations, the first max pooling
layer can actually reduce aliasing and therefore recover stability. Inspired by Waldspurger
(2015, pp. 190–191), we unveil a connection between the output of this pooling operator
and the modulus of complex Gabor-like coefficients, which is known to be nearly shift
invariant. This work led us to design an alternative antialiasing solution based on complex-
valued convolutions. Unlike the previously-mentioned papers, this approach preserves
high-frequency information, as evidenced in Chapter 5.

4.1.1 Proposed Approach

Let W ∈ l2C(Z2) denote a band-pass, oriented and analytic Gabor-like filter, for which a
formal definition will be provided in (4.12). We first consider an operator, referred to as
real-max-pooling (RMax), which computes the subsampled convolution of an input image
X ∈ l2R(Z2) with the real part of W; then calculates the maximum value over a sliding
discrete grid:

Umax
m, q [W] : X 7→ MaxPoolq

((
X ∗ Re W

)
↓ m

)
, (4.1)

where m ∈ N\{0} denotes a subsampling factor and ∗, ↓ respectively refer to the convolu-
tion and subsampling operations, introduced in (2.44) and (2.45). In the above expression,
MaxPoolq selects the maximum value over a sliding grid of size (2q + 1)× (2q + 1), with
a subsampling factor of 2. More formally, for any Y ∈ l2R(Z2) and any n ∈ Z2,

MaxPoolq(Y)[n] := max
∥p∥∞≤q

Y[2n + p]. (4.2)

Therefore, MaxPoolq satisfies (2.54) with m′ ← 2 and Ω0 ← Ωmax
0 . On the other hand,

we consider an operator, referred to as complex-modulus (CMod), computing the modulus
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of subsampled convolution of X with W:

Umod
m [W] : X 7→

∣∣∣(X ∗W) ↓ (2m)
∣∣∣ . (4.3)

Remark 4.1. In the above definitions, convolutions are performed with a subsampling
factor which is twice larger for CMod, compared to RMax. However, since max pooling is
also computed with subsampling, both operators have the same overall subsampling factor
of 2m.

First, we show that, under the Gabor hypothesis, CMod is stable with respect to small
input shifts. We then establish conditions on the filter’s frequency and orientation under
which CMod and RMax produce comparable outputs:

Umod
m [W] (X) ≈ Umax

m, q [W] (X). (4.4)

We deduce a measure of shift invariance for RMax operators, which benefits from the
stability of CMod. Next, we extend our results to multichannel operators (i.e., applied
on RGB input images), such as implemented in conventional CNN architectures. Our
framework therefore provides a theoretical grounding to study these networks.

We apply our theoretical results on the dual-tree complex wavelet packet transform
(DT-CWPT), a particular case of discrete Gabor-like decomposition with perfect recon-
struction properties (see Section 3.3.4), possessing characteristics comparable to those of
trained convolution layers in CNNs. Finally, we verify our predictions on a deterministic
setting based on DT-CWPT. Given an input image, we compute the mean discrepancy
between the outputs of CMod and RMax, for each wavelet packet filter.1 We then observe
that shift invariance, when measured on RMax feature maps, is nearly achieved when
they remain close to CMod outputs. We therefore establish a domain of validity for shift
invariance of RMax operators.

Prior to this work, we presented a preliminary study (Leterme et al., 2021), where
we experimentally showed that an operator based on the real part of DT-CWPT can
mimic the behavior of the first convolution layer with fewer parameters, while keeping
the network’s predictive power. Our model was solely based on real-valued filters, which
are known to be generally unstable (see Section 3.2.6). Yet, we observed a limited but
genuine form of shift invariance, compared with other models based on the standard, non-
analytic wavelet packet transform. At the same time, we became aware of a preliminary
work by Waldspurger (2015, pp. 190–191), suggesting a potential connection between the
combinations “real wavelet transform → max pooling” on the one hand and “complex
wavelet transform → modulus” on the other hand. Following this idea, we decided to
study whether invariance properties of complex moduli could somehow be captured by
the max pooling operator. As shown in the present chapter, Waldspurger’s work does not
fully extend to discrete and subsampled convolutions. We address this issue by adopting
a probabilistic point of view.

4.1.2 Related Work

In Chapter 3, we reviewed several papers in which wavelets meet deep learning. In Sec-
tion 3.4, we discussed wavelet scattering networks (ScatterNets) (Bruna and Mallat, 2013),

1As seen in Section 3.3.4, DT-CWPT paves the Fourier domain into square regions of identical size,
each of them associated with a specific filter.
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which compute several layers of complex wavelet convolutions followed by non-linear oper-
ations. They generate translation-invariant image representations that are stable to defor-
mations and preserve high-frequency information. However, these mathematical properties
cannot be directly applied to conventional CNN architectures for several reasons. Firstly,
ScatterNets use convolutions with complex-valued wavelet filters, followed by a modulus
operator, while standard CNNs implement real-valued convolutions, followed by a nonlin-
ear pointwise activation, like ReLU, and downsampling operators, such as max pooling.
Moreover, the scattering transform applies a nonlinear operator on feature maps with
varying sizes. This is typical of multiresolution transforms, where the subsampling factor
is typically larger at coarser scales. In contrast, in freely-trained models, each convolution
layer is characterized by a unique subsampling factor shared across all output channels.
In the present study, we take these specificities into account. In particular, our results
have been tested using the pseudo-cosine version of DT-CWPT (see Section 3.3.4), which
yields output feature maps of equal sizes.

ScatterNets are driven by the purpose of building ad-hoc CNN-like feature extractors,
implementing well defined mathematical operators specifically designed to meet a certain
number of desired properties. By contrast, our work seeks evidence that such properties
are—to some extent—embedded in existing CNN architectures, with no need to alter their
behavior or introduce new features.

Besides, several mathematical studies about CNNs have been reviewed in Section 3.5.2.
As explained in Section 3.5.3 however, the commonly-used case of discrete, subsampled
convolutions followed by ReLU and max pooling is not directly addressed. In some papers,
invariance properties are obtained for continuous signals, thus ignoring aliasing effects due
to subsampled convolutions (see Section 2.4.2). As for the wavelet scattering transform, it
is designed for shift invariance in both continuous and discrete frameworks. However, as
mentioned above, complex convolutions are not used in freely-trained networks; therefore,
a link is missing to understand invariance properties in the latter models. Finally, kernel
representations (Bietti and Mairal, 2019a) do not seem to suffer from aliasing effects.
Yet, they consider linear, Gaussian pooling layers instead of max pooling. By discarding
high-frequency information, shift invariance is preserved.

To summarize, this chapter tackles the question of shift invariance for real-valued
CNNs, using max pooling as an nonlinear aggregator preserving high-frequency informa-
tion. We remind that, as covered in Section 2.4.3, max pooling is known to produce
superior performances over linear pooling operators.

4.2 Shift Invariance of CMod Outputs
The primary goal of this chapter is to theoretically establish conditions for near-shift
invariance at the output of the first max pooling layer. In this section, we start by proving
shift invariance of CMod operators. Then, in Section 4.3, we establish conditions under
which RMax and CMod produce closely related outputs. Finally, in Section 4.4, we derive
a probabilistic measure of shift invariance for RMax.

4.2.1 Notations

We introduce the notations used throughout this chapter. Some of them have already been
used in the previous chapters, and are presented as a reminder, while others are specific
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to the current chapter.
The complex conjugate of any number z ∈ C is denoted by z∗. For any p ∈ R>0∪{∞},

x ∈ R2 and r ∈ R+, we denote by Bp(x, r) ⊂ R2 the closed lp-ball with center x and
radius r. When x = 0, we write Bp(r).

Continuous Framework. Given p > 0 and a measurable subset of R or R2 denoted by
E, we consider Lp

C(E) as the space of measurable complex-valued functions F : E → C
such that

∥F∥Lp :=
∫

E
|F (x)|p dx < +∞. (4.5)

Whenever we talk about equality in Lp
C(E) or inclusion in E, it shall be understood

as “almost everywhere with respect to the Lebesgue measure”. Besides, we denote by
L2
R(R2) ⊂ L2

C(R2) the subset of real-valued functions. For any F ∈ L2
C(R2), F denotes its

flipped version: F (x) := F (−x).
The 2D Fourier transform of any F ∈ L2

C(R2) is denoted by F̂ ∈ L2
C(R2), such that

∀ν ∈ R2, F̂ (ν) :=
∫∫

R2
F (x)e−i⟨ν, x⟩ d2x. (4.6)

For any ε > 0 and ν ∈ R2, we denote by V
(
ν, ε

)
⊂ L2

C(R2) the set of functions whose
Fourier transform is supported in a square region of size ε× ε centered in ν:

V
(
ν, ε

)
:=
{
Ψ ∈ L2

C(R2)
∣∣∣ supp Ψ̂ ⊂ B∞(ν, ε/2)

}
. (4.7)

For any h ∈ R2, we also consider the translation operator, denoted by Th, defined by

ThF : x 7→ F (x− h). (4.8)

Discrete Framework. We consider l2C(Zd) as the space of d-dimensional sequences
X ∈ CZd such that

∥X∥22 :=
∑

n∈Zd

∣∣X[n]
∣∣2 < +∞. (4.9)

Indexing is made between square brackets: ∀X ∈ l2C(Zd), ∀n ∈ Zd, X[n] ∈ C, and we
denote by l2R(Zd) ⊂ l2C(Zd) the subset of real-valued sequences. For any X ∈ l2C(Zd), X
denotes its flipped version: X[n] := X[−n]. The subsampling operator is denoted by ↓:
for any X ∈ l2C(Zd) and any m ∈ N \ {0}, (X ↓ m)[n] := X[mn].

2D images, feature maps and convolution kernels are considered as elements of l2C(Z2),
and are denoted by straight capital letters. Besides, arrays of 2D sequences are denoted by
bold straight capital letters, for instance: X = (Xk)k∈{0..K−1}. Note that indexing starts
at 0 to comply with practical implementations.

The 2D discrete-time Fourier transform of any X ∈ l2C(Z2) is denoted by

X̂ ∈ L2
C([−π, π]2), (4.10)

such that
∀θ ∈ [−π, π]2 , X̂(θ) :=

∑
n∈Z2

X[n]e−i⟨θ, n⟩. (4.11)
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For any κ ∈ ]0, 2π] and θ ∈ B∞(π), we denote by J
(
θ, κ

)
⊂ l2C(Z2) the set of 2D sequences

whose Fourier transform is supported in a square region of size κ× κ centered in θ:

J
(
θ, κ

)
:=
{

W ∈ l2C(Z2)
∣∣∣ supp Ŵ ⊂ B∞(θ, κ/2)

}
. (4.12)

Remark 4.2. The support B∞(θ, κ/2) actually lives in the quotient space [−π, π]2 /
(2πZ2). Consequently, when θ is close to an edge, a fraction of this region is located at
the far end of the frequency domain. From now on, the choice of θ and κ is implicitly
assumed to avoid such a situation.

4.2.2 Intuition

In many CNNs for computer vision, input images are first transformed through subsampled
(or strided) convolutions. For instance, in AlexNet, convolution kernels are of size 11× 11
and the subsampling factor is equal to 4. Figure 1.1 displays the corresponding kernels
after training with ImageNet. This linear transform is generally followed by rectified linear
unit (ReLU) and max pooling.

We can observe that many kernels display oscillating patterns with well-defined orien-
tations (Gabor-like filters). We denote by V ∈ l2R(Z2) one of these “well-behaved” filters.
Its Fourier spectrum roughly consists in two bright spots which are symmetric with respect
to the origin.2 Now, we consider a complex-valued companion W ∈ l2C(Z2) such that

Ŵ(ω) :=
(
1 + sgn⟨ω, u⟩

)
· V̂(ω) ∀ω ∈ [−π, π]2 , (4.13)

where u denotes a unit vector orthogonal to the filter’s orientation—see Section 5.2 for a
more detailed discussion on this topic.

We can show that V is the real part of W, and that W = V + iH(V), where H
denotes the two-dimensional Hilbert transform as introduced by Havlicek et al. (1997).
Analogously to (3.76) for wavelets in the continuous framework, H(V) satisfies

Ĥ(V)(ω) := −i sgn⟨ω, u⟩ V̂(ω). (4.14)

As a consequence, Ŵ is equal to 2V̂ on one half of the Fourier domain, and 0 on the other
half. Therefore, only one bright spot remains in the spectrum. We refer the reader to
Figure 5.1 for visual example of complex-valued Gabor-like filter. It turns out that such
complex filters with high frequency resolution produce stable signal representations, as we
will see in Section 4.2. In the subsequent sections, we then wonder whether this property
is kept when considering the max pooling of real-valued convolutions.

In what follows, W will be referred to as a discrete Gabor-like filter, and the coefficients
resulting from the convolution with W will be referred to as discrete Gabor-like coefficients.
The aim of this section is to show that, under the Gabor hypothesis on the convolution
kernels W ∈ l2C(Z2), CMod is nearly shift-invariant. To clarify, we establish that

Umod
m [W] (X) ≈ Umod

m [W] (TuX), (4.15)

for “small” translation vectors u ∈ R2, where a formal definition of the translation operator
will be defined in (4.41). This result is hinted by Kingsbury and Magarey (1998) but not
formally proven.

2Actually, the Fourier transform of any real-valued sequence is centrally symmetric: V̂(−ω) = V̂(ω)
∗
.

The specificity of well-oriented filters lies in the concentration of their power spectrum around two precise
locations.

69



CHAPTER 4. SHIFT INVARIANCE OF MAX POOLING FEATURE MAPS

4.2.3 Continuous Framework

We introduce several results regarding functions defined on the continuous space R2. Near-
shift invariance on discrete 2D sequences will then be derived from these results by taking
advantage of sampling theorems. Lemma 4.1 below is adapted from Waldspurger (2015,
pp. 190–191).

Lemma 4.1. Given ε > 0 and ν ∈ R2, let Ψ ∈ V
(
ν, ε

)
denote a complex-valued filter

such as defined in (4.7). Now, for any real-valued function F ∈ L2
R(R2), we consider the

complex-valued function F0 ∈ L2
C(R2) defined by

F0 : x 7→ (F ∗ Ψ)(x) ei⟨ν, x⟩. (4.16)

Then F0 is low-frequency. Specifically,

supp F̂0 ⊂ B∞(ε/2). (4.17)

Proof. Applying the Fourier transform on (4.16) yields, for any ξ ∈ R2,

F̂0(ξ) = ̂(F ∗ Ψ)(ξ − ν) = Tν
(
F̂ Ψ̂

)
(ξ). (4.18)

By hypothesis on Ψ , we have

supp(F̂ Ψ̂) ⊂ supp Ψ̂ ⊂ B∞(−ν, ε/2). (4.19)

The translation operator Tν shifts the support with respect to ν, which yields (4.17).

On the other hand, the following proposition provides a shift invariance bound for
low-frequency functions such as introduced above.

Proposition 4.1. For any F0 ∈ L2
R(R2) such that supp F̂0 ⊂ B∞(ε/2), and any h ∈ R2,

∥ThF0 − F0∥L2 ≤ α(εh) ∥F0∥L2 , (4.20)

where we have defined

α : τ 7→ ∥τ∥12 . (4.21)

Proof. Using the 2D Plancherel formula, we compute

∥ThF0 − F0∥2L2 = 1
4π2

∥∥∥T̂hF0 − F̂0
∥∥∥2

L2

= 1
4π2

∫∫
B∞(ε/2)

∣∣∣F̂0(ξ)
∣∣∣2 ∣∣∣e−i⟨h, ξ⟩ − 1

∣∣∣2 d2ξ

= 1
4π2

∫∫
B∞(ε/2)

∣∣∣F̂0(ξ)
∣∣∣2 (2− 2 cos ⟨h, ξ⟩

)
d2ξ

≤ 1
4π2

∫∫
B∞(ε/2)

∣∣∣F̂0(ξ)
∣∣∣2 |⟨h, ξ⟩|2 d2ξ,
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because cos t ≥ 1− t2

2 . Note that the integral is computed on a compact domain because,
according to Lemma 4.1, supp F̂0 ⊂ B∞(ε/2). Now, we use the Cauchy-Schwarz inequality
to compute:

∀ξ ∈ B∞(ε/2), |⟨h, ξ⟩| ≤ ∥h∥1 · ∥ξ∥∞
≤ ε

2 ∥h∥1 .

Therefore,
∥ThF0 − F0∥2L2 ≤

ε

4 ∥h∥
2
1 ∥F0∥2L2 , (4.22)

which yields the result.

4.2.4 Adaptation to Discrete 2D Sequences

Given κ ∈ ]0, 2π] and θ ∈ B∞(π), let W ∈ J
(
θ, κ

)
denote a discrete Gabor-like filter such

as defined in (4.12). For any image X ∈ l2C(Z2) with finite support and any subsampling
factor m ∈ N \ {0}, we express (X ∗W) ↓ m using the continuous framework introduced
above, and derive an invariance formula.

For any sampling interval s ∈ R>0, let Φ(s) ∈ L2
R(R2) denote the Shannon scaling

function parameterized by s, such that

Φ̂(s) := s1B∞(π/s). (4.23)

This 2D function is a tensor product of scaled and normalized sinc functions. For any
n ∈ Z2, we denote by Φ(s)

n a shifted version of Φ(s), satisfying

Φ(s)
n (x) := Φ(s)(x− sn). (4.24)

Then, similarly to (3.46),
{
Φ

(s)
n
}

n∈Z2 is an orthonormal basis of

V(s) :=
{
G ∈ L2

C(R2)
∣∣ supp Ĝ ⊂ B∞(π/s)

}
. (4.25)

Then, using the notation introduced in (4.7), we have V(s) = V(0, 2π/s).
Remark 4.3. In Chapter 3, we introduced a more restrictive framework, in which we
have denoted Vsh := V(s) and Φsh

n := Φ
(s)
n , with s := 1 (distance-preserving mapping

between discrete and continuous frameworks). In this chapter, we consider a more generic
formulation using an arbitrary sampling interval s > 0. In addition to be more physically
interpretable (the sampling interval can receive physical distance units), this notation will
be of practical interest in subsequent sections, when considering multiples of this initial
value, such as in Lemma 4.4. Moreover, we consider V(s) as a C-vector space.

We now consider the following lemma.
Lemma 4.2. Let s > 0. For any G ∈ V(s) and any ξ ∈ B∞(π/s), we have

Ĝ(ξ) = s Ŷ(sξ), (4.26)

where Y ∈ l2C(Z2) is a uniform sampling of G, defined such that Y[n] := sG(sn), for any
n ∈ Z2. Besides, we have the following norm equality:

∥G∥L2 = ∥Y∥2 . (4.27)
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Proof. Since G ∈ V(s), the two-dimensional version of Shannon’s sampling theorem (Mal-
lat, 2009, Theorem 3.11, p. 81) yields

G =
∑

n∈Z2

Y[n]Φ(s)
n , and Ĝ =

∑
n∈Z2

Y[n] Φ̂(s)
n . (4.28)

Besides, using (4.23), we can show that, for any ξ ∈ B∞(π/s),

Φ̂
(s)
n (ξ) = Φ̂(s)(ξ) e−i⟨sξ, n⟩ = s e−i⟨sξ, n⟩. (4.29)

Therefore, plugging (4.29) into (4.28) proves (4.26).
Then, by combining (4.26) with the Plancherel formula, we get

∥G∥2L2 = 1
4π2

∥∥Ĝ∥∥2
L2

= 1
4π2

∫∫
B∞(π/s)

∣∣Ĝ(ξ)
∣∣2 d2ξ

= 1
4π2

∫∫
B∞(π/s)

∣∣s Ŷ(sξ)
∣∣2 d2ξ.

The integral is performed on B∞(π/s) because G ∈ V(s). Then, by applying the change
of variable ξ′ ← sξ, we get

∥G∥2L2 = 1
4π2

∫∫
B∞(π)

∣∣Ŷ(ξ′)
∣∣2 d2ξ′

= 1
4π2

∥∥Ŷ∥∥2
L2 = ∥Y∥22 ,

hence (4.27), which concludes the proof.

We then get the following proposition. In a similar spirit as Section 3.2.2, it draws a
bond between the discrete and continuous frameworks.

Proposition 4.2. Let X ∈ l2R(Z2) denote an input image with finite support, and W ∈
J
(
θ, κ

)
. Considering a sampling interval s ∈ R>0, we define FX and ΨW ∈ V(s) such that

FX :=
∑

n∈Z2

X[n]Φ(s)
n and ΨW :=

∑
n∈Z2

W[n]Φ(s)
n . (4.30)

Then,
ΨW ∈ V

(
θ/s, κ/s

)
. (4.31)

Moreover, for all n ∈ Z,

X[n] = s FX(sn); W[n] = s ΨW(sn), (4.32)

and, for a given subsampling factor m ∈ N \ {0},(
(X ∗W) ↓ m

)
[n] =

(
FX ∗ ΨW

)
(msn) . (4.33)
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Proof. First, FX and ΨW are well defined because X ∈ l2R(Z2) and W ∈ l2C(Z2). By
construction, FX and ΨW ∈ V(s). Therefore, according to Shannon’s sampling theorem
(Mallat, 2009, Theorem 3.11, p. 81),

FX := s
∑

n∈Z2

FX(sn)Φ(s)
n and ΨW := s

∑
n∈Z2

ΨW(sn)Φ(s)
n . (4.34)

By uniqueness of decompositions in an orthonormal basis, we get (4.32). Moreover, using
(4.26) in Lemma 4.2, we get, for any ξ ∈ B∞(π/s),

Ψ̂W(ξ) = s Ŵ(sξ). (4.35)

Since Ψ̂W(ξ) = 0 outside B∞(π/s), (4.35) is true for any ξ ∈ R2. Therefore, by hypothesis
on W,

supp Ψ̂W ⊂ B∞
(
θ/s, κ/(2s)

)
, (4.36)

which yields (4.31).
We now prove (4.33). For n ∈ Z2, we compute:

(FX ∗ ΨW) (msn) =
∫∫

R2
FX(msn− x)ΨW(x) d2x

=
∫∫

R2

∑
p∈Z2

X[p]Φ(s)
p (msn− x)ΨW(x) d2x

=
∑

p∈Z2

X[p]
∫∫

R2
Φ(s)

p (msn− x)ΨW(x) d2x.

The sum-integral interchange is possible because X has a finite support. Then:

(FX ∗ ΨW) (msn) =
∑

p∈Z2

X[p]
∫∫

R2
ΨW(x)Φ(s)(s(mn− p)− x

)
d2x (4.37)

=
∑

p∈Z2

X[p]
(
ΨW ∗ Φ(s))(s(mn− p)

)
(4.38)

Since {Φ(s)
n }n∈Z2 is an orthonormal basis of V(s), the definition of ΨW in (4.30) implies,

for any p′ ∈ Z2,
W[p′] =

〈
ΨW, Φ

(s)
−p′

〉
=
(
ΨW ∗ Φ(s)

)
(sp′), (4.39)

because Φ(s) is even. Therefore, plugging (4.39) with p′ ← (mn− p) into (4.38) yields

(FX ∗ ΨW) (msn) =
∑

p∈Z2

X[p] W[mn− p] =
(
X ∗W

)
[mn], (4.40)

hence the result.

Proposition 4.2 introduces a latent subspace of L2
R(R2) from which input images are

uniformly sampled. This allows us to define, for any u ∈ R2, a translation operator Tu on
discrete sequences, even if u has non-integer values:

TuX[n] := s TsuFX(sn), (4.41)
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where FX is defined in (4.30). We can indeed show that this definition is independent from
the choice of sampling interval s > 0. Besides, given X ∈ l2R(Z2), we have

∀p ∈ Z2, TpX[n] = X[n− p]; (4.42)
∀u, v ∈ R2, Tu(TvX) = Tu+vX, (4.43)

which shows that Tu corresponds to the intuitive idea of a translation operator. Expres-
sions (4.42) and (4.43) are direct consequence of the following lemma, which bonds the
shift operator in the discrete and continuous frameworks.

Lemma 4.3. For any X ∈ l2R(Z2) and any u ∈ R2,

FTuX = TsuFX. (4.44)

Proof. Let u ∈ R2. By definition of FTuX and TuX,

FTuX = s
∑

n∈Z2

TsuFX(sn)Φ(s)
n . (4.45)

On the other hand, FX ∈ V(s) by construction. Therefore, TsuFX ∈ V(s). Then, according
to Shannon’s sampling theorem (Mallat, 2009, Theorem 3.11, p. 81), we get

TsuFX = s
∑

n∈Z2

TsuFX(sn)Φ(s)
n , (4.46)

which concludes the proof.

We now consider the following corollary to Proposition 4.2.

Corollary 4.1. For any shift vector u ∈ R2, we have(
(TuX ∗W) ↓ m

)
[n] =

(
TsuFX ∗ ΨW

)
(msn) . (4.47)

Proof. Applying (4.33) in Proposition 4.2 with X← TuX, we get(
(TuX ∗W) ↓ m

)
[n] =

(
FTuX ∗ ΨW

)
(msn) , (4.48)

and Lemma 4.3 concludes the proof.

4.2.5 Shift Invariance in the Discrete Framework

We consider the CMod operator defined in (4.3). For the sake of conciseness, in what
follows we will write Umod

m instead of Umod
m [W], when no ambiguity is possible. First, we

state the following lemma.

Lemma 4.4. For any input image X ∈ l2R(Z2) with finite support, and any Gabor-like
filter W ∈ J

(
θ, κ

)
, we consider the low-frequency function

F0 : x 7→ (FX ∗ ΨW)(x) ei⟨θ/s, x⟩, (4.49)

with FX and ΨW satisfying (4.30). If κ ≤ π/m, then

F0 ∈ V(s′). (4.50)
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Moreover, for any h ∈ R2,∑
n∈Z2

∣∣∣ThF0(s′n)− F0(s′n)
∣∣∣2 = 1

s′2 ∥ThF0 − F0∥2L2 , (4.51)

where we have denoted s′ := 2ms. Finally,∥∥Umod
m X

∥∥
2 = 1

s′ ∥F0∥L2 . (4.52)

Proof. Let us write:∑
n∈Z2

∣∣∣ThF0(s′n)− F0(s′n)
∣∣∣2 =

∑
n∈Z2

|G(s′n)|2 = 1
s′2 ∥Y∥

2
2 , (4.53)

where we have denoted, for any n ∈ Z2,

G := ThF0 − F0 and Y[n] := s′G(s′n). (4.54)

According to Proposition 4.2 (4.31), ΨW ∈ V
(
θ/s, κ/s

)
. Therefore, according to Lemma 4.1,

supp F̂0 ⊂ B∞

(
κ

2s

)
. (4.55)

Moreover, by hypothesis, κ ≤ π/m; thus,

B∞

(
κ

2s

)
⊂ B∞

(
π

s′

)
, (4.56)

which yields (4.50), and G ∈ V(s′). Then, according to Lemma 4.2 (4.27) with s← s′,

∥Y∥2 = ∥G∥L2 = ∥ThF0 − F0∥L2 . (4.57)

Therefore, plugging (4.57) into (4.53) yields (4.51).
Besides, according again to Lemma 4.2,

∥F0∥2L2 = ∥X0∥22 , (4.58)

where we have defined, for any n ∈ Z2,

X0[n] := s′F0(s′n). (4.59)

Then,

∥X0∥22 = s′2 ∑
n∈Z2

∣∣∣(FX ∗ ΨW
)
(s′n)

∣∣∣2 (acc. to (4.49))

= s′2 ∑
n∈Z2

∣∣∣(X ∗W) ↓ (2m)[n]
∣∣∣2 (acc. to Proposition 4.2 with m← 2m)

= s′2 ∥∥Umod
m X

∥∥2
2. (acc. to (4.3))

Finally, plugging this result into (4.58) yields (4.52) and concludes the proof.
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We are now ready to state the main result about shift invariance of CMod outputs.

Theorem 4.1 (Shift invariance of CMod). Let W ∈ J
(
θ, κ

)
denote a discrete Gabor-like

filter and m ∈ N \ {0} denote a subsampling factor. Then, under the following condition:

κ ≤ π/m, (4.60)

we have, for any input image X ∈ l2R(Z2) with finite support and any translation vector
u ∈ R2, ∥∥Umod

m (TuX)− Umod
m X

∥∥
2 ≤ α(κu)

∥∥Umod
m X

∥∥
2, (4.61)

where α has been defined in (4.21).

Proof. As in Lemma 4.4, we consider the low-frequency function F0 satisfying (4.49), and
denote s′ := 2ms. We can write

|FX ∗ ΨW| = |F0| and |TsuFX ∗ ΨW| = |TsuF0|. (4.62)

Recall that Umod
m X =

∣∣(X ∗W) ↓ (2m)
∣∣, such as defined in (4.3). According to Proposi-

tion 4.2 (4.33) and Corollary 4.1 (4.47) with m← 2m, we therefore get

Umod
m X[n] =

∣∣F0(s′n)
∣∣ ; (4.63)

Umod
m (TuX)[n] =

∣∣(TsuF0)(s′n)
∣∣ . (4.64)

Then, using (4.63), (4.64) and the reverse triangle inequality,

∥∥Umod
m (TuX)− Umod

m X
∥∥2

2 =
∑

n∈Z2

∣∣∣∣∣(TsuF0)(s′n)
∣∣− ∣∣F0(s′n)

∣∣∣∣∣2
≤
∑

n∈Z2

∣∣∣(TsuF0)(s′n)− F0(s′n)
∣∣∣2.

Since condition (4.60) is satisfied, we can use Lemma 4.4 (4.51) with h← su:

∥∥Umod
m (TuX)− Umod

m X
∥∥2

2 ≤
1
s′2 ∥TsuF0 − F0∥2L2 (4.65)

Now, according to Proposition 4.1 with ε ← κ/s and h ← su, we then get the following
bound: ∥∥Umod

m (TuX)− Umod
m X

∥∥2
2 ≤

α(κu)2

s′2 ∥F0∥2L2 . (4.66)

Finally, using Lemma 4.4 (4.52) yields (4.61), which completes the proof.

Interestingly, the reference value used in Theorem 4.1, i.e.,
∥∥Umod

m X
∥∥

2, is fully shift-
invariant, as stated in the following proposition.

Proposition 4.3. Let W ∈ J
(
θ, κ

)
and m ∈ N \ {0}. Under condition (4.60), we have,

for any X ∈ l2R(Z2) and any u ∈ R2,∥∥Umod
m (TuX)

∥∥
2 =

∥∥Umod
m X

∥∥
2. (4.67)
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Proof. Let X ∈ l2R(Z2) and s > 0. We consider F0 ∈ L2
C(R2) as the “low-frequency”

function satisfying (4.49). Again, we introduce s′ := 2ms and X0 ∈ l2C(Z2) satisfying
(4.59). Moreover, for any Y ∈ l2R(Z2), we denote by F (s′)

Y the Shannon interpolation of Y
parameterized by s′, analogously to (4.30):

F
(s′)
Y :=

∑
n∈Z2

Y[n]Φ(s′)
n . (4.68)

On the one hand, Lemma 4.4 provides (4.52). On the other hand, we seek a similar
result with X← TuX. For this purpose, (4.64) can be rewritten

Umod
m (TuX)[n] =

∣∣Ts′u′F0(s′n)
∣∣, (4.69)

with u′ := u/(2m). Besides, according to Lemma 4.4 (4.50), F0 ∈ V(s′). Therefore,
Shannon’s sampling theorem (Mallat, 2009, Theorem 3.11, p. 81) with s← s′ yields

F0 = s′ ∑
n∈Z2

F0(s′n)Φ(s′)
n

=
∑

n∈Z2

X0[n]Φ(s′)
n = F

(s′)
X0

,

where we have used the notations introduced in (4.59) and (4.68). Then, using Lemma 4.3
with X← X0, u← u′ and s← s′, we get

F
(s′)
Tu′ X0

= Ts′u′F
(s′)
X0

= Ts′u′F0. (4.70)

Besides, (4.32) (from Proposition 4.2) with X← Tu′X0 and s← s′ becomes

Tu′X0[n] = s′ F
(s′)
Tu′ X0

(s′n), (4.71)

and inserting (4.70) into (4.71) yields

Tu′X0[n] = s′ Ts′u′F0(s′n). (4.72)

Therefore, (4.69) and (4.72) imply

∥∥Umod
m (TuX)

∥∥
2 = 1

s′ ∥Tu′X0∥2 . (4.73)

Moreover, since F0 ∈ V(s′), and according to (4.72), we can use Lemma 4.2 with s ← s′,
G← Ts′u′F0 and Y← Tu′X0. We get

∥Tu′X0∥2 = ∥Ts′u′F0∥L2 = ∥F0∥L2 , (4.74)

and plugging (4.74) into (4.73) yields

∥∥Umod
m (TuX)

∥∥
2 = 1

s′ ∥F0∥L2 . (4.75)

Finally, considering Lemma 4.4 (4.52) concludes the proof.
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4.3 From CMod to RMax

CMod operators are found in ScatterNets (see Section 3.4) and complex-valued convo-
lutional networks (Tygert et al., 2016). However, they are absent from conventional,
freely-trained CNN architectures. Therefore, Theorem 4.1 cannot be applied as is. In-
stead, the first convolution layer contains real-valued kernels, and is generally followed
by ReLU and max pooling. As shown in Section 4.5, this process can be described with
RMax operators, such as defined in (4.1).

As explained in Section 2.4.1, an important number of trained convolution kernels
exhibit oscillating patterns with well-defined frequencies and orientations. To elaborate,
let V ∈ l2R(Z2) denote such a trained kernel, and consider W ∈ l2C(Z2) as the complex-
valued companion of V satisfying (4.13). Then, W has its energy concentrated in a small
region of the Fourier domain. We thus emit the hypotheses that W ∈ J

(
θ, κ

)
(4.12) for

a certain value of θ ∈ [−π, π]2 and κ ∈ ]0, 2π]. For the sake of conciseness, from now on
we write Umax

m, q instead of Umax
m, q [W], when no ambiguity is possible. In what follows, we

establish conditions on W under which CMod (4.3) and RMax (4.1) operators produce
comparable outputs. The final goal, achieved in Section 4.4, is to provide a shift invariance
bound for RMax.

To give an intuition about why RMax may act as a proxy for CMod, we place ourselves
in the continuous framework. Consider the real-valued wavelet transform output ReG :=
F ∗ ReΨ , employed in RMax, as the real part of the complex-valued wavelet transform
outputG := F ∗Ψ , used in CMod. At a given location x ∈ R2, the corresponding imaginary
part may carry a large amount of information, which somehow needs to be retrieved. The
key idea is that, if Ψ is sufficiently localized in the Fourier domain, then only the phase of
G significantly varies in the vicinity of x, whereas its magnitude remains nearly constant.
Therefore, finding the maximum value of ReG within a local neighborhood around x
is nearly equivalent to shifting the phase of G(x) towards 0. The resulting value then
approximates |G(x)|. To put it differently, max pooling pushes energy towards lower
frequencies, in a similar way as the modulus does for complex-valued transforms (Bruna
and Mallat, 2013). This result is hinted in Section 4.3.1.

Regretfully, things do not work so smoothly in the discrete case. At first glance, this is
surprising because Shannon’s sampling theorem allows to cast discrete problems into the
continuous framework, as done in Section 4.2.4. However, as explained in Section 4.3.2,
max pooling operates over a discrete grid instead of a continuous window. Consequently,
in some situations, the maximum value may fall far away from any zero-phase coefficient.
Taking into account this behavior, we adopt a probabilistic point of view, as detailed in
Section 4.3.4. Then, we provide in Section 4.3.5 an upper bound for the expected gap
between CMod and RMax outputs.

4.3.1 Continuous Framework

This section, inspired from Waldspurger (2015, pp. 190–191), provides an intuition about
resemblance between RMax and CMod in the continuous framework. As will be high-
lighted in Section 4.3.2, adaptation to discrete 2D sequences is not straightforward and
will require a probabilistic approach.

We consider an input function F ∈ L2
R(R2) and a band-pass filter Ψ ∈ V

(
ν, ε

)
. Let us
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also consider
G : (x, h) 7→ cos

(
⟨ν, h⟩ −H(x)

)
, (4.76)

where H : R2 → [0, 2π[ denotes the phase of F ∗ Ψ . Lemma 4.1 introduced low-frequency
functions F0, with slow variations. In a nutshell, since suppF0 ⊂ B∞(ε/2), we can write

∥h∥2 ≪ λF0 =⇒ F0(x + h) ≈ F0(x), (4.77)

where we have defined λF0 := 2π/ε. Therefore, according to Proposition 4.4 below, we get
the following approximation of F ∗ ReΨ in a neighborhood around any point x ∈ R2:

∥h∥2 ≪ λF0 =⇒ (F ∗ ReΨ)(x + h) ≈
∣∣(F ∗ Ψ)(x)

∣∣G(x,h). (4.78)

Proposition 4.4. For any h ∈ R2,∣∣∣(F ∗ ReΨ)(x + h)−
∣∣(F ∗ Ψ)(x)

∣∣G(x,h)
∣∣∣ ≤ ∣∣F0(x + h)− F0(x)

∣∣. (4.79)

Proof. Let us write:

(F ∗ ReΨ)(x + h)−
∣∣(F ∗ Ψ)(x)

∣∣G(x,h)

= Re
(
(F ∗ Ψ)(x + h)

)
−
∣∣(F ∗ Ψ)(x)

∣∣ Re
(
e−i⟨ν, h⟩ eH(x)

)
= Re

(
(F ∗ Ψ)(x + h)

)
− Re

(∣∣(F ∗ Ψ)(x)
∣∣ eH(x) e−i⟨ν, h⟩

)
= Re

(
(F ∗ Ψ)(x + h)

)
− Re

(
(F ∗ Ψ)(x) e−i⟨ν, h⟩

)
= Re

(
(F ∗ Ψ)(x + h)− (F ∗ Ψ)(x) e−i⟨ν, h⟩

)
.

Therefore,∣∣∣(F ∗ ReΨ)(x + h)−
∣∣(F ∗ Ψ)(x)

∣∣G(x,h)
∣∣∣ ≤ ∣∣∣(F ∗ Ψ)(x + h)− (F ∗ Ψ)(x) e−i⟨ν, h⟩

∣∣∣
=
∣∣∣F0(x + h) e−i⟨ν, x+h⟩ − F0(x) e−i⟨ν, x+h⟩

∣∣∣ ,
which yields (4.79) and concludes the proof.

On the one hand, we consider a continuous equivalent of the CMod operator Umod
m [W]

as introduced in (4.3). Such an operator, denoted by Umod[Ψ ], is defined, for any F ∈
L2
R(R2), by

Umod[Ψ ] (F ) : x 7→
∣∣∣(F ∗ Ψ)(x)

∣∣∣ . (4.80)

On the other hand, we consider the continuous counterpart of RMax as introduced in
(4.1). It is defined as the maximum value of F ∗ReΨ over a sliding spatial window of size
r > 0. This is possible because F and ReΨ both belong to L2

R(R2), and therefore F ∗ReΨ
is continuous. Such an operator, denoted by Umax

r [Ψ ], is defined, for any F ∈ L2
R(R2), by

Umax
r [Ψ ] (F ) : x 7→ max

∥h∥∞≤r
(F ∗ ReΨ)(x + h). (4.81)
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For the sake of conciseness, the parameter between square brackets is ignored from now
on. If r ≪ λF0 , then (4.78) is valid for any h ∈ B∞(r). Then, using (4.80) and (4.81), we
get

r ≪ λF0 =⇒ Umax
r F (x) ≈ UmodF (x) max

∥h∥∞≤r
G(x,h). (4.82)

Using the periodicity of G, we can show that, if r ≥ π
∥ν∥2

, then h 7→ G(x,h) necessarily
reaches its maximum value (i.e., 1) on B∞(r). We therefore get

π

∥ν∥2
≤ r ≪ 2π

ε
=⇒ Umax

r F (x) ≈ UmodF (x). (4.83)

4.3.2 Adaptation to Discrete 2D Sequences

As in Section 4.2.4, we consider an input image X ∈ l2R(Z2), a complex, analytic convolution
kernel W ∈ J

(
θ, κ

)
, a subsampling factor m ∈ N\{0} and an integer q ∈ N\{0}, referred

to as a half-size, such that max pooling operates on a grid of size (2q + 1)× (2q + 1). We
seek a relationship between

Ymax := Umax
m, q [W] (X) and Ymod := Umod

m [W] (X), (4.84)

where Umax
m, q [W] (RMax) and Umod

m [W] (CMod) have been respectively defined in (4.1) and
(4.3). As before, in what follows we omit the parameter between square brackets.

We now use the sampling results from Proposition 4.2. Let FX and ΨW ∈ V(s) denote
the functions satisfying (4.30). Recall that the continuous versions of CMod and RMax
operators, denoted by have been defined in (4.80) and (4.81), respectively. On the one
hand, we apply (4.33) with m← 2m to Ymod. For any n ∈ Z2,

Umod
m X[n] = (FX ∗ ΨW)(xn) (4.85)

= UmodFX(xn), (4.86)

with xn := 2msn. On the other hand, we postulate that

Umax
m, q X[n] = Umax

r FX(xn) (4.87)

for a certain value of r ∈ R>0. Then, (4.83) implies Ymod ≈ Ymax. However, as explained
hereafter, (4.87) is not satisfied, due to the discrete nature of the max pooling grid.
According to (4.1) and (4.2), we have

Umax
m, q X[n] = max

∥p∥∞≤q
Re
((

X ∗W
)
↓ m

)
[2n + p]. (4.88)

Therefore, according to (4.33) in Proposition 4.2, we get

Umax
m, q X[n] = max

∥p∥∞≤q
(FX ∗ ReΨW) (xn + hp) , (4.89)

with
xn := 2msn and hp := msp. (4.90)

By considering rq := ms
(
q + 1

2

)
, we get a variant of (4.87) in which the maximum is

evaluated on a discrete grid of (2q+1)2 elements, instead of the continuous region B∞(rq),
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as defined in (4.81) with r ← rq. As a consequence, (4.82) is replaced in the discrete
framework by

q ≪ 2π/(mκ) =⇒ Umax
m, q X[n] ≈ Umod

m X[n] max
∥p∥∞≤q

GX
(
xn, hp

)
, (4.91)

where we have introduced, similarly to (4.76),

GX : (x, h) 7→ cos
(
⟨ν, h⟩ −HX(x)

)
, (4.92)

with
ν := θ/s and HX := ∠

(
FX ∗ ΨW

)
, (4.93)

where ∠ : C→ [0, 2π[ denotes the phase operator. Unlike the continuous case, even if the
window size rq is large enough, the existence of p ∈ {−q . . q}2 such that GX

(
xn, hp

)
= 1

is not guaranteed, as illustrated in Figure 4.1 with q = 1. Instead, we can only seek a
probabilistic estimation of the normalized mean squared error between Ymax and Ymod.

Approximation (4.91) implies

q ≪ 2π/(mκ) =⇒
∥∥Umod

m X− Umax
m, q X

∥∥
2 ≈ ∥δm, qX∥2 , (4.94)

where δm, qX ∈ l2R(Z2) is defined such that, for any n ∈ Z2,

δm, qX[n] := Umod
m X[n]

(
1− max

∥p∥∞≤q
GX
(
xn, hp

))
. (4.95)

Expression (4.94) suggests that the difference between the left and right terms can be
bounded by a quantity which only depends on the product mκ (subsampling factor ×
frequency localization) and the grid half-size q. In what follows, we establish a bound
characterizing this approximation, which will be provided in Proposition 4.5.

For the sake of conciseness, we introduce the following notations:

AX : (x, h) 7→ (FX ∗ ReΨW)(x + h); (4.96)
ÃX : (x, h) 7→

∣∣(FX ∗ ΨW)(x)
∣∣GX(x,h). (4.97)

We now consider, for any n ∈ Z2, the vectors hmax
n and h′max

n ∈ ms {−q . . q}2 achieving the
maximum value of AX(xn, hp) and ÃX(xn, hp) over the max pooling grid, respectively.
They satisfy

Amax
X (xn) := AX

(
xn, hmax

n

)
= max

∥p∥∞≤q
AX(xn, hp); (4.98)

Ãmax
X (xn) := ÃX

(
xn, h′max

n

)
= max

∥p∥∞≤q
ÃX(xn, hp). (4.99)

Then, according to (4.85) and (4.89), we get, for any n ∈ Z2,

Amax
X (xn) = Umax

m, q X[n]; (4.100)
Ãmax

X (xn) = Umod
m X[n] max

∥p∥∞≤q
GX
(
xn, hp

)
, (4.101)

and (4.91) becomes

q ≪ 2π/(mκ) =⇒ Amax
X (xn) ≈ Ãmax

X (xn). (4.102)
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Remark 4.4. Expression (4.78) implies that AX(xn, hp) ≈ ÃX(xn, hp) for all p ∈
{−q . . q}2, if q ≪ 2π/(mκ). However, this property does not guarantee that AX and
ÃX reach their maximum in the same exact location; i.e., that hmax

n = h′max
n .

The following lemma provides a bound for approximation (4.102).

Lemma 4.5. For any x ∈ R2,∣∣∣Amax
X (xn)− Ãmax

X (xn)
∣∣∣ ≤ max

h∈{hmax
n , h′max

n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣. (4.103)

Proof. We apply Proposition 4.4 with h← hmax
n and h← h′max

n , respectively:

Amax
X (xn) ≤ ÃX

(
xn, hmax

n

)
+
∣∣F0
(
xn + hmax

n

)
− F0(xn)

∣∣ ; (4.104)
Ãmax

X (xn) ≤ AX
(
xn, h′max

n

)
+
∣∣F0
(
xn + h′max

n

)
− F0(xn)

∣∣ . (4.105)

By construction, we have, for any p ∈ {−q . . q}2,

ÃX
(
xn, hp

)
≤ Ãmax

X (xn) and AX
(
xn, hp

)
≤ Amax

X (xn). (4.106)

Moreover, by definition, there exists p and p′ ∈ {−q . . q}2 such that hmax
n = hp and

h′max
n = hp′ . Therefore, (4.104) and (4.105) yield, respectively,

Amax
X (xn) ≤ Ãmax

X (xn) +
∣∣F0
(
xn + hmax

n

)
− F0(xn)

∣∣ ; (4.107)
Ãmax

X (xn) ≤ Amax
X (xn) +

∣∣F0
(
xn + h′max

n

)
− F0(xn)

∣∣ , (4.108)

which yields (4.103) and concludes the proof.

Before stating Proposition 4.5, we consider the following hypothesis:

Hypothesis 4.1. There exists h0 ∈ R2 with ∥h0∥2 =
√

2qms, such that

∑
n∈Z2

max
h∈{hmax

n , h′max
n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣2 ≤ ∑

n∈Z2

∣∣∣F0(xn + h0)− F0(xn)
∣∣∣2. (4.109)

The underlying idea is explained as follows. The absolute difference between F0(xn+h)
and F0(xn) is more likely to increase with the norm of h. For any given n ∈ Z2, we have,
by construction, ∥hmax

n ∥2 ≤
√

2qms and
∥∥h′max

n

∥∥
2 ≤
√

2qms. Therefore, we can expect to
observe

max
h∈{hmax

n , h′max
n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣2 ≤ ∣∣∣F0(xn + h0)− F0(xn)

∣∣∣2. (4.110)

While this might occasionally not be true, Hypothesis 4.1 postulates that, when summing
over all the datapoints, the inequality holds.

We now formally state the result characterizing approximation (4.94).
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Proposition 4.5. We assume that condition (4.60) is satisfied: κ ≤ π/m. Then, under
Hypothesis 4.1, ∥∥Umod

m X− Umax
m, q X

∥∥
2 ≤

∥∥δm, qX
∥∥

2 + βq(mκ)
∥∥Umod

m X
∥∥

2, (4.111)

where βq : R+ → R+ is defined by

βq : κ′ 7→ qκ′. (4.112)

Proof. Let us write:∥∥Umod
m X− Umax

m, q X
∥∥2

2 =
∑

n∈Z2

(
Umod

m X[n]− Umax
m, q X[n]

)2

=
∑

n∈Z2

(
Umod

m X[n]− Umod
m X[n] max

∥p∥∞≤q
GX
(
xn, hp

)
+Umod

m X[n] max
∥p∥∞≤q

GX
(
xn, hp

)
− Umax

m, q X[n]
)2

=
∑

n∈Z2

(
δm, qX[n] + Ãmax

X (xn)−Amax
X (xn)

)2
,

according to (4.95), (4.100) and (4.101). Then, using the triangle inequality, we get

∥∥Umod
m X− Umax

m, q X
∥∥

2 ≤
∥∥δm, qX

∥∥
2 +

∑
n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)2
1/2

. (4.113)

Furthermore, Lemma 4.5 yields∑
n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)2
≤
∑

n∈Z2

max
h∈{hmax

n , h′max
n }

∣∣∣F0(xn + h)− F0(xn)
∣∣∣2 (4.114)

≤
∑

n∈Z2

∣∣∣F0(xn + h0)− F0(xn)
∣∣∣2, (4.115)

according to Hypothesis 4.1. Now, since (4.60) is satisfied, we can use Lemma 4.4 (4.51)
with h← h0. We get∑

n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)2
≤ 1

4m2s2 ∥Th0F0 − F0∥2L2

≤ α(κh0/s)2 1
4m2s2 ∥F0∥2L2 (acc. to Proposition 4.1)

= α(κh0/s)2 ∥∥Umod
m X

∥∥2
2. (acc. to Lemma 4.4 (4.52))

Since, according to Hypothesis 4.1, ∥h0∥2 =
√

2qms, it comes that ∥h0∥1 = 2qms. There-
fore,

α(κh0/s)2 = κ2 ∥h0∥21
4s2 = (qmκ)2, (4.116)
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Figure 4.1. Search for the maximum value of h 7→ GX(x, h) over a discrete grid of size 3 × 3,
i.e., q = 1. This figure displays 3 examples with different frequencies ν := θ/s and phases HX(x).
Hopefully the result will be close to the true maximum (left), but there are some pathological cases
in which all points in the grid fall into pits (middle and right).

which yields ∑
n∈Z2

(
Ãmax

X (xn)−Amax
X (xn)

)2
≤ βq(mκ)2 ∥∥Umod

m X
∥∥2

2. (4.117)

Finally, plugging (4.117) into (4.113) concludes the proof.

Remark 4.5. βq(mκ) is independent from the characteristic frequency θ ∈ [−π, π]2.

We now seek a probabilistic estimation of
∥∥δm, qX

∥∥
2. For this purpose, we first re-

formulate the problem using the unit circle S1 ⊂ C, before introducing a probabilistic
framework in Section 4.3.4.

4.3.3 Notations on the Unit Circle

In what follows, for any z ∈ C\{0}, we denote by ∠z ∈ [0, 2π[ the argument of z. For any
z, z′ ∈ S1, the angle between z and z′ is given by ∠(z∗z′). We then denote by [z, z′]S1 ⊂ S1

the arc on the unit circle going from z to z′ counterclockwise:[
z, z′]

S1 :=
{
z′′ ∈ S1

∣∣∣ ∠(z∗z′′) ≤ ∠(z∗z′)
}
. (4.118)

We remind readers that xn and hp ∈ R2 have been defined in (4.90). By using the
relation cosα = Re(eiα), (4.92) becomes, for any n ∈ Z2 and any p ∈ {−q . . q}2,

GX
(
xn, hp

)
= Re

(
Z∗

X(xn)Zp(mθ)
)
, (4.119)

where we have defined the following functions with outputs on the unit circle:

ZX : x 7→ ei HX(x) and Zp : ω 7→= ei⟨ω, p⟩, (4.120)

where HX denotes the phase of FX∗ΨW as introduced in (4.93). On the one hand, ZX(xn)
is the phase (represented on the unit circle S1) of the complex wavelet transform FX ∗ΨW
at location xn. On the other hand, Zp(mθ) approximates the phase shift between any
two evaluations of FX ∗ ΨW at locations x, x′ such that x′ − x = hp. This however is
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only true if we assume that ΨW exhibits slow amplitude variations. Then, GX
(
xn, hp

)
approximates the cosine of the phase of FX ∗ ΨW at location xn + hp.

According to (4.91), max∥p∥∞≤q GX
(
xn, hp

)
approximates the ratio between RMax

and CMod outputs at discrete location n ∈ Z2. The intuition behind this is that max
pooling seeks a point in a discrete grid around xn where the phase of FX∗ΨW is the closest
to 1, thereby maximizing the amount of energy on the real part of the signal. Assuming
slow amplitude variations of ΨW, the result therefore approximates the modulus of the
complex coefficients.

To get an estimation of δm, qX[n] (4.95), which approximates the difference between
CMod and RMax outputs at a given location n ∈ Z2, we will exploit the following property.
If {Zp(mθ)}p∈{−q..q}2 is well distributed on the unit circle, then the values of GX

(
xn, hp

)
are evenly spread out on [−1, 1]. Therefore, its maximum value is more likely to be close
to 1, and (4.95) becomes

δm, qX[n]≪ Umod
m X[n] ∀n ∈ Z2. (4.121)

Let nq := (2q+1)2 denote the number of evaluation points for the max pooling operator.
For any ω ∈ R2, we consider a sequence of values on S1, denoted by

(
Z

(q)
i (ω)

)
i∈{0..nq−1},

obtained by sorting {Zp(ω)}p∈{−q..q}2 (4.120) in ascending order of their arguments:

0 = H
(q)
0 (ω) ≤ · · · ≤ H(q)

nq−1(ω) < 2π, (4.122)

where H(q)
i (ω) denotes the phase of Z(q)

i (ω). Besides, we close the loop with H(q)
nq (ω) := 2π

and Z
(q)
nq (ω) := 1. Then, we split S1 into nq arcs delimited by Z(q)

i (ω):

A
(q)
i (ω) :=


[
Z

(q)
i (ω), Z(q)

i+1(ω)
]
S1

if H(q)
i+1(ω)−H(q)

i (ω) < 2π;
S1 otherwise.

(4.123)

Finally, for any i ∈ {0 . . nq − 1}, we denote by

δH
(q)
i : ω 7→ H

(q)
i+1(ω)−H(q)

i (ω) (4.124)

the function computing the angular measure of arc A
(q)
i (ω), for any ω ∈ R2.

4.3.4 Probabilistic Framework

From now on, input X is considered as discrete 2D stochastic processes. In order to
“randomize” FX introduced in (4.30), we define a continuous stochastic process from X,
denoted by FX, such that

∀x ∈ R2, FX(x) :=
∑

n∈Z2

X[n]Φ(s)
n (x). (4.125)

Now, we consider the following stochastic processes, which are parameterized by X:

MX := |FX ∗ ΨW|; HX := ∠(FX ∗ ΨW); ZX := eiHX , (4.126)

and, for any p ∈ {−q . . q}2,

GX, p := Re
(
Z∗

X Zp(mθ)
)
; Gmax

X := max
∥p∥∞≤q

GX, p, (4.127)

where the deterministic function Zp has been defined in (4.120).

85
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Remark 4.6. HX(x) is ill-defined if MX(x) = 0. To overcome this, it is designed to follow
a uniform conditional probability distribution on [0, 2π[, given MX(x) = 0. Moreover, we
impose the following conditional independence, for any n ∈ N\{0} and x, y0, . . . , yn−1 ∈
R2:

HX(x) ⊥⊥M
∣∣ MX(x) = 0, with M :=

(
MX(y0), · · · , MX(yn−1)

)⊤
. (4.128)

Finally, we impose the following relationship between HTuX and HX, for any u ∈ R2:

MTuX(x) = 0 =⇒ HTuX(x) = TsuHX(x). (4.129)

For any x ∈ R2, FX(x) (4.30) and HX(x) (4.93) are respectively drawn from FX(x)
and HX(x). Then, ZX(x) (4.120) is a realization of ZX(x). Consequently, according to
(4.119), GX

(
x, hp

)
is a realization of GX, p(x). Besides, according to the definition of

CMod in (4.3) and xn in (4.90), Proposition 4.2 with m← 2m implies that

MX(xn) = Umod
m X[n]. (4.130)

We remind that θ ∈ [−π, π]2 and κ ∈ ]0, 2π] respectively denote the center and size
of the Fourier support of the complex kernel W ∈ J

(
θ, κ

)
. To compute the expected

discrepancy between Ymax and Ymod, we assume that

∥θ∥2 ≫ 2π/N ; (4.131)
∥θ∥2 ≫ κ, (4.132)

where N ∈ N \ {0} denotes the support size of input images. These assumptions exclude
low-frequency filters from the scope of our study. We then state the following hypotheses,
for which a justification is provided in Section 4.A.

Hypothesis 4.2. For any x ∈ R2, ZX(x) is uniformly distributed on S1.

Hypothesis 4.3. For any n ∈ N \ {0} and x, y0, . . . , yn−1 ∈ R2, the random variables
MX(yi) for i ∈ {0 . . n− 1} are jointly independent of ZX(x).

4.3.5 Expected Quadratic Error between RMax and CMod

In this section, we propose to estimate the expected value of the stochastic quadratic error
P̃2

X, defined such that

P̃X :=
∥∥Umod

m X− Umax
m, q X

∥∥
2/
∥∥Umod

m X
∥∥

2. (4.133)

According to (4.84), this is an estimation of the relative error between Ymod and Ymax.
First, let us reformulate δm, qX, introduced in (4.95), using the probabilistic framework.

According to (4.119) and (4.127), we have, for any n ∈ Z2,

δm, qX[n] := Umod
m X[n]

(
1− Gmax

X (xn)
)
. (4.134)

We now consider the stochastic process

QX := 1− Gmax
X , (4.135)
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and the random variable
Q̃X := ∥δm, qX∥2 /

∥∥Umod
m X

∥∥
2. (4.136)

The next steps are as follows: (1) at the pixel level, show that E[QX(x)2] depends on
the subsampling factor m and the filter frequency θ, and remains close to zero with some
exceptions; (2) at the image level, show that the expected value of Q̃2

X is equal to the
latter quantity; (3) use Proposition 4.5, which states that P̃X ≈ Q̃X, to deduce an upper
bound on the expected value of P̃2

X.
The first point is established in Proposition 4.6 below, and the two remaining ones are

the purpose of Theorem 4.2.

Proposition 4.6. Assuming Hypothesis 4.2, the expected value of QX(x)2 is independent
from the choice of x ∈ R2, and

E
[
QX(x)2

]
= γq(mθ)2, (4.137)

where we have defined

γq : ω 7→

√√√√3
2 + 1

4π

nq−1∑
i=0

(
sin δH(q)

i (ω)− 8 sin δH
(q)
i (ω)
2

)
, (4.138)

with δH(q)
i (ω) ∈ [0, 2π] (4.124) being the length of arc A

(q)
i (ω).

Proof. For the sake of readability, in this proof we omit the argument of functions Zp

(4.120), Z(q)
i , H(q)

i (4.122), A
(q)
i (4.123), and δH

(q)
i (4.124); we assume they are eval-

uated at ω ← mθ. We consider the “Lebesgue” Borel σ-algebra on S1 generated by{
[z, z′]S1

∣∣ z, z′ ∈ S1} ∪ {S1}, on which we have defined the angular measure ϑ such that
ϑ(S1) := 2π, and

∀z, z′ ∈ S1, ϑ
([
z, z′]

S1
)

:= ∠(z∗z′). (4.139)

For any p ∈ N \ {0}, we compute the p-th moment of Gmax
X (x) defined in (4.127). By

considering

gmax : S1 → [−1, 1]
z 7→ max

∥p∥∞≤q
Re
(
z∗Zp

)
, (4.140)

we get Gmax
X (x) = gmax(ZX(x)). A visual representation of gmax is provided in Figure 4.2,

for two different values of θ. According to Hypothesis 4.2, ZX(x) follows a uniform distri-
bution on S1. Therefore,

E [Gmax
X (x)p] = 1

2π

∫
S1
gmax(z)p dϑ(z), (4.141)

which proves that E [Gmax
X (x)p] does not depend on x. Let us split the unit circle S1 into

the arcs A
(q)
0 , . . . , A

(q)
nq−1 such as introduced in (4.123):

E [Gmax
X (x)p] = 1

2π

nq−1∑
i=0

∫
A

(q)
i

gmax(z)p dϑ(z). (4.142)
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(a) General case (b) Pathological case

Figure 4.2. Top: 2D representation of h 7→ GX(xn, h) (4.92), for two different values of θ ∈ R2,
q = 1 and arbitrary values of m ∈ N\{0} and s ∈ R\{0}. Assuming the plots are centered around
h = 0, each point materializes a location hp in the max pooling grid, for p ∈ {−q . . q}2. The
desirable situation occurs when one of these locations falls near a ridge (bright areas), in which
case the outputs produced by RMax and CMod are similar—see (4.91). Each number i ∈ {0 . . 8}
represents the rank of Zp ∈ S1 (4.120), when these values are sorted by ascending order of their
arguments (4.122). If rank i is affected to location hp, then we have Zp = Z

(q)
i . Bottom: polar

representations of gmax : S1 → [−1, 1] (4.140), corresponding to the same settings. The closer
the curve is from the outer ring, the more likely some points hp will fall near a ridge of GX. (a)
Case where the values Zp are roughly evenly distributed on S1. (b) Case where these values are
concentrated in a small portion of the unit circle. The most extreme cases occurs when Zp = 1 for
any p. Figure 4.1 (middle and right) depicts two such situations.
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Let i ∈ {0 . . nq − 1}. We show that

∀z ∈ A
(q)
i , gmax(z) = max

(
Re
(
z∗Z

(q)
i

)
, Re

(
z∗Z

(q)
i+1
))
. (4.143)

Let z ∈ A
(q)
i and i′ /∈ {i, i+ 1}. We prove that

Re
(
z∗Z

(q)
i′
)
≤ Re

(
z∗Z

(q)
i

)
or Re

(
z∗Z

(q)
i′
)
≤ Re

(
z∗Z

(q)
i+1
)
. (4.144)

On the one hand, we assume that ∠
(
z∗Z

(q)
i′
)
≤ π. By design of

(
Z

(q)
i

)
i∈{0..nq−1}, we have

Z
(q)
i+1 ∈

[
z, Z

(q)
i′
]
S1 . (4.145)

Therefore, by definition of arcs on the unit circle (4.118), we get

∠
(
z∗Z

(q)
i+1
)
≤ ∠

(
z∗Z

(q)
i′
)
. (4.146)

Then, since cos is non-increasing on [0, π], we get

cos∠
(
z∗Z

(q)
i+1
)
≥ cos∠

(
z∗Z

(q)
i′
)
, (4.147)

which yields the right part of (4.144). On the other hand, if ∠
(
z∗Z

(q)
i′
)
≥ π, a similar

reasoning yields the left part of (4.144). Then, (4.143) holds.
Now, we show that, as observed in Figure 4.2, gmax is piecewise-symmetric with respect

to the center value of each arc A
(q)
i , denoted by

Z
(q)
i :=

√
Z

(q)
i Z

(q)
i+1. (4.148)

Let z1, z2 ∈ A
(q)
i which are symmetric with respect to Z(q)

i . Therefore, there exists z′ ∈ S1

such that z1 = Z
(q)
i z′ and z2 = Z

(q)
i z′∗. We now prove that

gmax(z1) = gmax(z2). (4.149)

A simple calculation yields

z∗
1Z

(q)
i+1 = z′∗Z̃

(q)
i and z∗

2Z
(q)
i =

(
z′∗Z̃

(q)
i

)∗
, (4.150)

with
Z̃

(q)
i :=

(
Z

(q)
i

∗
Z

(q)
i

)
=
(
Z

(q)
i

∗
Z

(q)
i+1
)
. (4.151)

Therefore,
Re
(
z∗

1Z
(q)
i+1
)

= Re
(
z∗

2Z
(q)
i

)
. (4.152)

Since z1, z2 both belong to A
(q)
i , gmax(z1) and gmax(z2) satisfy (4.143). Then, by symmetry,

(4.152) implies (4.149). One can observe from Figure 4.2 that gmax reaches its local
minimum at the center of arc A

(q)
i , i.e., Z(q)

i . This corresponds to a point where gmax is
non-differentiable.

We denote by A
(q)
i :=

[
Z

(q)
i , Z

(q)
i

]
S1 the first half of arc A

(q)
i . Then,

∀z ∈ A
(q)
i , gmax(z) = Re

(
z∗Z

(q)
i

)
. (4.153)
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As a consequence, using symmetry, we get∫
A

(q)
i

gmax(z)p dϑ(z) = 2
∫
A

(q)
i

gmax(z)p dϑ(z)

= 2
∫
A

(q)
i

Re
(
z∗Z

(q)
i

)p dϑ(z).

By using the change of variable formula (Athreya and Lahiri, 2006, p. 81) with z ← eiη,
we get ∫

A
(q)
i

gmax(z)p dϑ(z) = 2
∫ H

(q)
i

H
(q)
i

cosp(η −H(q)
i

)
dη, (4.154)

where H(q)
i :=

(
H

(q)
i +H(q)

i+1
)
/2 denotes the argument of Z(q)

i . Then, the change of variable
η′ ← η −H(q)

i yields ∫
A

(q)
i

gmax(z)p dϑ(z) = 2
∫ δH

(q)
i /2

0
cosp η′ dη′. (4.155)

Now, we insert (4.155) into (4.142), and compute E [Gmax
X (x)p] for p← 1 and p← 2:

E [Gmax
X (x)] = 1

π

nq−1∑
i=0

sin δH
(q)
i

2 ;

E
[
Gmax

X (x)2
]

= 1
2 + 1

4π

nq−1∑
i=0

sin δH(q)
i .

We recall that QX := 1− Gmax
X . By linearity of E, we get

E
[
QX(x)2

]
:= 3

2 + 1
4π

nq−1∑
i=0

(
sin δH(q)

i − 8 sin δH
(q)
i

2

)
, (4.156)

which concludes the proof.

We consider an ideal scenario where
(
Z

(q)
i (mθ)

)
i∈{0..nq−1} are evenly spaced on S1.

Then, an order 2 Taylor expansion yields

γq(mθ) = o(1/q2), (4.157)

providing an order-two-polynomial decay rate for QX(x), when the grid half-size q in-
creases. Figure 4.3 displays θ 7→ γq(mθ)2 for θ ∈ [−π, π]2, with m = 4 and q = 1 as in
AlexNet. We notice that, for the major part of the Fourier domain, γq remains close to 0.
However, we observe a regular pattern of dark regions, which correspond to pathological
frequencies where the repartition of

(
Z

(q)
i (mθ)

)
i∈{0..nq−1} is unbalanced.

So far, we established a result at the pixel level. Before stating Theorem 4.2, which
extends the result to the image level, we need the following intermediate statement.

Proposition 4.7. We consider the random variable

S̃X :=
∥∥Umod

m X
∥∥

2. (4.158)

Under Hypothesis 4.3, for any x ∈ R2,

90



4.3. FROM CMOD TO RMAX

Figure 4.3. γ(mθ)2 as a function of the kernel characteristic frequency θ ∈ [−π, π]2. According
to Theorem 4.2, this quantity provides an approximate bound for the expected quadratic error
between RMax and CMod outputs. The subsampling factor m has been set to 2 as in ResNet
(left), and 4 as in AlexNet (right). The bright regions correspond to frequencies for which the
two outputs are expected to be similar. However, in the dark regions, pathological cases such as
illustrated in Figure 4.1 are more likely to occur.

• ZX(x) is independent of S̃X;

• ZX(x), MX(x) are conditionally independent given S̃X.

Proof. We suppose that Hypothesis 4.3 is satisfied and we consider x ∈ R2. For a given
n ∈ N \ {0}, we introduce the random variable

S̃X, n :=
√ ∑

∥p∥∞≤n

MX(xp)2. (4.159)

According to Hypothesis 4.3, ZX(x) is jointly independent of MX(xp) for p ∈ {−n . . n}2.
Therefore, by composition, ZX(x) is also independent of S̃X, n. Moreover, according to
(4.130) and (4.158), S̃X, n converges almost surely towards S̃X, which proves independence
between ZX(x) and S̃X.

Now, we prove conditional independence between ZX(x) and MX(x) given S̃X. Ac-
cording to Hypothesis 4.3, (

MX(x), S̃X, n

)
⊥⊥ ZX(x), (4.160)

where ⊥⊥ stands for independence. This is because S̃X, n only depends on a finite number
of MX(xp). Therefore,

ZX(x) ⊥⊥ MX(x)
∣∣ S̃X, n. (4.161)

Finally, since S̃X, n converges almost surely towards S̃X, it comes that ZX(x) and MX(x)
are conditionally independent given S̃X.

Finally, Propositions 4.6 and 4.7 yield the following theorem. It provides an upper
bound on the expected value of the normalized mean squared error P̃2

X, such as defined in
(4.133).
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Theorem 4.2 (Discrepancy between CMod and RMax). Let W ∈ J
(
θ, κ

)
denote a

discrete Gabor-like filter, m ∈ N \ {0} a subsampling factor and q ∈ N \ {0} a grid half-
size. We consider a stochastic process X whose realizations are elements of l2R(Z2). We
assume that condition (4.60) is satisfied: κ ≤ π/m. Then, under Hypotheses 4.1 to 4.3,3

E
[
P̃2

X
]
≤
(
βq(mκ) + γq(mθ)

)2
, (4.162)

where P̃2
X (4.133) denotes the stochastic quadratic error between CMod and RMax outputs.

We remind that βq and γq have been introduced in (4.112) and (4.138), respectively.

Proof. We consider n ∈ Z2. By construction, QX(xn) := 1 − Gmax
X (xn) only depends on

ZX(xn). Therefore, under Hypothesis 4.3, Proposition 4.7 implies

QX(xn) ⊥⊥ MX(xn)
∣∣ S̃2

X and QX(xn) ⊥⊥ S̃2
X. (4.163)

Besides, we introduce
∆̃X := ∥δm, qX∥2 , (4.164)

where δm, qX is defined in (4.134). Then, using the linearity of E, we get

E
[
∆̃2

X

∣∣∣ S̃2
X = σ

]
=
∑

n∈Z2

E
[
δm, q[n]2

∣∣∣ S̃2
X = σ

]
=
∑

n∈Z2

E
[
Umod

m, l X[n]2
(
1− Gmax

X (xn)
)2 ∣∣∣ S̃2

X = σ
]

=
∑

n∈Z2

E
[
MX(xn)2 QX(xn)2

∣∣∣ S̃2
X = σ

]
(acc. to (4.130) and (4.135))

=
∑

n∈Z2

E
[
MX(xn)2

∣∣∣ S̃2
X = σ

]
E
[
QX(xn)2] (acc. to (4.163)).

According to (4.130) and (4.158), we have∑
n∈Z2

MX(xn)2 =
∥∥Umod

m X
∥∥2

2 = S̃2
X. (4.165)

Therefore, using again the linearity of E, we get

E
[
∆̃2

X

∣∣∣ S̃2
X = σ

]
= E

[
S̃2

X

∣∣∣ S̃2
X = σ

]
E
[
QX(xn)2]

= σ · E
[
QX(xn)2].

Under Hypothesis 4.2, Proposition 4.6 yields

E
[
∆̃2

X

∣∣∣ S̃2
X = σ

]
= σ · γq(mθ)2. (4.166)

Besides, we can reformulate Q̃X such as defined in (4.136): Q̃X = ∆̃X/S̃X. Therefore,

E
[
Q̃2

X

∣∣∣ S̃2
X = σ

]
= 1
σ
E
[
∆̃2

X

∣∣∣ S̃2
X = σ

]
= γq(mθ)2. (4.167)

3We can easily prove that these properties are independent from the choice of sampling interval s > 0.
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According to (4.167), the conditional expected value of Q̃2
X remains the same whatever

the outcome of S̃2
X. Thus, the law of total expectation states that

E
[
Q̃2

X
]

= E
[
E
[
Q̃2

X
∣∣ S̃2

X
]]

= γq(mθ)2. (4.168)

Since we have assumed Hypothesis 4.1, we can apply Proposition 4.5. Using the
definition of P̃X (4.133) and Q̃X (4.136), we get

P̃X ≤ Q̃X + βq(mκ). (4.169)

Then,
E
[
P̃2

X
]
≤ E

[
Q̃2

X
]

+ 2βq(mκ)E
[
Q̃X
]

+ βq(mκ)2. (4.170)

According to Jensen’s inequality,

E
[
Q̃X
]
≤
√
E
[
Q̃2

X
]

= γq(mθ). (4.171)

Thus,
E
[
P̃2

X
]
≤ γq(mθ)2 + 2βq(mκ)γq(mθ) + βq(mκ)2, (4.172)

which yields (4.162).

Let us analyze the bound obtained in (4.162). The first term, βq(mκ), accounts for the
localized property of the convolution filter W. Assumably, it decreases linearly with the
product mκ. In the limit case where κ = 0 (infinite, nonlocal filter), we get βq(mκ) = 0.
Note that a smaller subsampling factor m allows for a larger bandwidth κ. Besides, βq(mκ)
increases with the size of the max pooling grid, which is characterized by q. The second
term, γq(mθ), accounts for the discrete nature of the max pooling grid. It strongly depends
on the characteristic frequency θ, as illustrated in Figure 4.3. According to (4.157), this
term has a polynomial decay when q increases. However, increasing the size of the max
pooling grid also results in increasing the term βq(mκ), as explained above. Therefore, a
tradeoff must be found to get an optimal bound.

4.4 Shift Invariance of RMax Outputs
In this section, we present the main theoretical claim of this chapter. Based on the previous
results, we provide a probabilistic measure of shift invariance for RMax operators. First,
we consider the following lemma.

Lemma 4.6. If Hypotheses 4.2 and 4.3 are satisfied, then they are also true with X ←
TuX, for any u ∈ R2.

Proof. First, we show that, for any x ∈ R2,

MTuX(x) = TsuMX(x); (4.173)
ZTuX(x) = TsuZX(x). (4.174)

According to Lemma 4.3, and since the convolution product commutes with translations,
we have (

FTuX ∗ ΨW
)
(x) = Tsu

(
FX ∗ ΨW

)
(x). (4.175)
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Then, using (4.126), the above expression becomes

MTuX(x)× ZTuX(x) = (TsuMX)(x)× (TsuZX)(x). (4.176)

Therefore, we necessarily have (4.173). On the one hand, if MTuX(x) > 0, then (4.174)
is satisfied, by uniqueness of the magnitude-phase decomposition. On the other hand, if
MTuX(x) = 0, then (4.129) also guarantees (4.174), by design.

Finally, we remind that

TsuMX(x) = MX(x− su) and TsuZX(x) = ZX(x− su). (4.177)

Then, considering hypotheses Hypotheses 4.2 and 4.3 with x ← x − su concludes the
proof.

We are now ready to state the main result about shift invariance of RMax outputs.
Theorem 4.3 (Shift invariance of RMax). We assume that the requirements stated in
Theorem 4.2 are satisfied. Besides, given a translation vector u ∈ R2, we consider the
following random variable:

R̃X, u :=
∥∥Umax

m, q (TuX)− Umax
m, q X

∥∥
2/
∥∥Umod

m X
∥∥

2. (4.178)

Then, under condition (4.60), we have

E
[
R̃X, u

]
≤ 2

(
βq(mκ) + γq(mθ)

)
+ α(κu), (4.179)

where α, βq and γq are defined in (4.21), (4.112) and (4.138), respectively.
Proof. Using the triangle inequality, we compute∥∥Umax

m, q (TuX)− Umax
m, q X

∥∥
2

≤
∥∥Umod

m (TuX)
∥∥

2 P̃TuX +
∥∥Umod

m X
∥∥

2 P̃X +
∥∥Umod

m (TuX)− Umod
m X

∥∥
2, (4.180)

where P̃X and P̃TuX are defined in (4.133). According to (4.60), we can apply Proposi-
tion 4.3 on the first term of (4.180):∥∥Umod

m (TuX)
∥∥

2 =
∥∥Umod

m X
∥∥

2. (4.181)

Moreover, we can apply Theorem 4.1 to the third term of (4.180):∥∥Umod
m (TuX)− Umod

m X
∥∥

2 ≤ α(κu)
∥∥Umod

m X
∥∥

2. (4.182)

We therefore get∥∥Umax
m, q (TuX)− Umax

m, q X
∥∥

2 ≤
[
P̃TuX + P̃X + α(κu)

] ∥∥Umod
m X

∥∥
2. (4.183)

Then, by linearity of E, we get

E
[
R̃X, u

]
≤ E

[
P̃TuX

]
+ E

[
P̃X
]

+ α(κu), (4.184)

where R̃X, u has been introduced in (4.179).
For any stochastic process X′ satisfying Hypotheses 4.2 and 4.3, Theorem 4.2 and

Jensen’s inequality yield:
E
[
P̃X′

]
≤ βq(mκ) + γq(mθ). (4.185)

According to Lemma 4.6, Hypotheses 4.2 and 4.3 are also satisfied for X← TuX. Therefore,
(4.185) is valid for both X′ ← X and X′ ← TuX, and plugging it into (4.184) concludes
the proof.
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In the bound established in (4.179), the sum βq(mκ) + γq(mθ) accounts for the dis-
crepancy between RMax and CMod outputs, as stated in Theorem 4.2, whereas the term
α(κu) characterizes the stability of CMod outputs, as stated in Theorem 4.1. If κ is
sufficiently small, then α(κu) and βq(mκ) become negligible with respect to γq(mθ), and
the bound can be approximated by 2 γq(mθ). Theorem 4.3 therefore provides a validity
domain for shift invariance of RMax operators, as illustrated in Figure 4.3 with q = 1.

Remark 4.7. The stochastic discrepancy introduced in (4.178) is estimated relatively to
the CMod output. This choice is motivated by the perfect shift invariance of its norm, as
shown in Proposition 4.3.

Remark 4.8. In practice, most of the time max pooling is performed on a grid of size
3 × 3; therefore q = 1. For the sake of conciseness, we shall sometimes drop q in the
notations, which implicitly means q = 1.

4.5 Adaptation to Multichannel Convolution Operators
In this section, we adapt Theorems 4.1 to 4.3 to multichannel inputs (e.g., RGB images),
employed in conventional CNNs such as AlexNet or ResNet. A detailed description of
CNNs is provided in Chapter 2.

First, we define multichannel CMod and RMax operators relatively to (4.3) and (4.1).
We denote by K and L ∈ N \ {0} the number of input and output channels, respectively.
Besides, we consider a multichannel convolution tensor

W := (Wlk)l∈{0..L−1}, k∈{0..K−1} ∈
(
l2C(Z2)

)L×K
. (4.186)

Multichannel RMax and CMod operators take as input images, denoted by

X := (Xk)k∈{0..K−1} ∈
(
l2R(Z2)

)K
. (4.187)

They are defined, for any given output channel l ∈ {0 . . L− 1}, by

Umax
m, q, l[W] : X 7→ MaxPoolq

(
K−1∑
k=0

(
Xk ∗ Re Wlk

)
↓ m

)
; (4.188)

Umod
m, l [W] : X 7→

∣∣∣∣∣
K−1∑
k=0

(Xk ∗Wlk) ↓ (2m)
∣∣∣∣∣ , (4.189)

where m, q ∈ N \ {0} respectively denote a subsampling factor and the max pooling grid
half-size. Analogously to (4.84) for single-channel inputs, we now consider

Ymax
l := Umax

m, q, l[W] (X) and Ymod
l := Umod

m, l [W] (X). (4.190)

Again, in what follows we omit the parameter between square brackets. To apply Theo-
rems 4.1 to 4.3 to the current setting on the l-th output channel, we need the following
hypotheses.

Hypothesis 4.4 (Monochorome filters). Let

W̃l := 1
K

K−1∑
k=0

Wlk (4.191)
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denote the mean kernel of the l-th output channel. Then, there exists µl ∈ RK such that

∀k ∈ {0 . .K − 1} , Wlk = µlkW̃l. (4.192)

Hypothesis 4.5 (Gabor-like filters). There exists a bandwidth κ > 0 satisfying κ ≤ π/m
and a frequency vector θl ∈ [−π, π]2 such that

W̃l ∈ J
(
θl, κ

)
. (4.193)

Note that the bandwidth κ is not indexed by l, because it shall later be assumed to be
shared across the output channels. Then, under Hypothesis 4.4, Ymax

l and Ymod
l are the

outputs of single-channel RMax and CMod operators, as introduced in (4.1) and (4.3):

Ymax
l = Umax

m, q

[
W̃l

](
Xlum

l

)
and Ymod

l = Umod
m

[
W̃l

](
Xlum

l

)
, (4.194)

where Xlum
l ∈ l2R(Z2) (“luminance” image) is defined as the following linear combination:

Xlum
l :=

K−1∑
k=0

µlkXk. (4.195)

The results established for single-channel inputs can therefore be extended to multichannel
operators. Specifically, we get the following corollaries to Theorems 4.1 to 4.3.
Corollary 4.2 (Shift invariance of CMod). For a given output channel l ∈ {0 . . L− 1},
we postulate Hypotheses 4.4 and 4.5. Then, for any input image X ∈

(
l2R(Z2)

)K with finite
support and any translation vector u ∈ R2,∥∥Umod

m, l (TuX)− Umod
m, l X

∥∥
2 ≤ α(κu)

∥∥Umod
m, l X

∥∥
2, (4.196)

where α has been defined in (4.21).
Corollary 4.3 (Discrepancy between CMod and RMax). As in Corollary 4.2, we postu-
late Hypotheses 4.4 and 4.5. Again, we assume that condition (4.60) is satisfied: κ ≤ π/m.
Besides, we consider X as a stack of K discrete stochastic processes, and assume Hypothe-
ses 4.1 to 4.3 with X← Xlum

l and W← W̃l. Then,

E
[
P̃2

X, l

]
≤
(
βq(mκ) + γq(mθl)

)2
, (4.197)

where we have defined the following random variable:

P̃X, l :=
∥∥Umod

m, l X− Umax
m, l X

∥∥
2/
∥∥Umod

m, l X
∥∥

2. (4.198)

Corollary 4.4 (Shift invariance of RMax). We assume that the requirements stated in
Corollary 4.3 are satisfied. Then, for any translation vector u ∈ R2,

E
[
R̃X, u, l

]
≤ 2

(
βq(mκ) + γq(mθl)

)
+ α(κu), (4.199)

where we have defined the following random variable:

R̃X, u, l :=
∥∥Umax

m, l (TuX)− Umax
m, l X

∥∥
2/
∥∥Umod

m, l X
∥∥

2. (4.200)

Remark 4.9. In the above results, we used a translation operator on multichannel tensors,
obtained by applying Tu, as defined in (4.41), to each channel Xk.

In Section 5.3, we shall examine the applicability of the above results to freely-trained
models such as AlexNet or ResNet. Specifically, the validity of Hypotheses 4.4 and 4.5
will be evaluated experimentally.
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4.6 A Case Study Implementing the Dual-Tree Complex
Wavelet Packet Transform

In this section, we experimentally validate the results stated in Theorems 4.1 to 4.3. To
this end, we consider a fully-deterministic setting based on the dual-tree complex wavelet
packet transform (DT-CWPT), for which a detailed description and the principles upon
which it is designed is provided in Section 3.3. As formally established in Sections 4.6.1
and 4.6.2, for a given decomposition depth J ∈ N \ {0}, DT-CWPT achieves subsam-
pled convolutions with oriented band-pass filters, tiling the Fourier domain into 4 × 4J

overlapping square windows of size κJ := π/mJ , where we have denoted mJ := 2J−1.
Based on this, in Section 4.6.3, we build CMod and RMax operators, respectively satis-
fying (4.3) and (4.1) with m ← mJ . Note that increasing the decomposition depth J ,
and therefore the subsampling factor mJ , results in a decreased Fourier support size κJ ,
therefore matching the condition stated in (4.60) with κ← κJ and m← mJ . DT-CWPT
thus provides a convenient framework to experimentally validate Theorems 4.1 to 4.3 in a
controlled environment. As will be evidenced in Section 5.3, the initial convolution layer
in CNNs such as AlexNet or ResNet behaves in a similar way.

4.6.1 Convolution Operators

We first examine the real-valued WPT algorithm in its fully-decomposed version, such
as introduced in Section 3.2.5. In this context, we use the notations introduced in Sec-
tion 3.2 (real-valued wavelet transforms). Considering J ∈ N \ {0} as the decomposition
depth, input images X ∈ l2R(Z2) are decomposed in a pseudo-local cosine basis E(J) (3.64).
The following lemma introduces an array of convolution kernels V(J) :=

(
V(J)

l

)
l∈{0..4J −1}

characterizing WPT. It is a simple reformulation of the well-known result that two suc-
cessive convolutions can be written as another convolution with a wider kernel. A visual
representation of these kernels is provided in Figure 4.4 (left) with J = 2.

Lemma 4.7. For any l ∈
{
0 . . 4J − 1

}
,

D(J)
l =

(
X ∗V(J)

l

)
↓ 2J , with V(J)

l := E(J)
l, 0 , (4.201)

where E(J)
l, 0 (atom of the discrete wavelet packet basis) and D(J)

l ∈ l2R(Z2) (feature map of
wavelet packet coefficients) have been introduced in (3.62) and (3.63), respectively.

Proof. We use the decomposition formula in an orthonormal basis. For any n ∈ Z2,

D(J)
l [n] =

〈
X, E(J)

l, n

〉
. (4.202)

Besides, employing an inductive reasoning approach to (3.62) demonstrates that each basis
function E(J)

l, n can be derived from V(J)
l := E(J)

l, 0 by shifting it by the vector 2Jn:

E(J)
l, n[p] = V(J)

l [p− 2Jn]. (4.203)

Therefore, (4.202) can be rewritten as a convolution product with V(J)
l , which concludes

the proof.
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Figure 4.4. Convolution kernels V(J) for WPT (left) and W↗(J), W↘(J) for DT-CWPT (right 1⃝
and 2⃝, respectively). The number of decomposition stages J is set to 2. In both cases, the kernels
have been computed using Q-shift orthogonal QMFs of length 10 (Kingsbury, 2003). The kernels
have been cropped to size 11 × 11 for the sake of legibility. Both W↗(J) and W↘(J) contain 16
complex filters, alternatively represented by their real and imaginary parts.

Despite interesting properties such as sparsity of image representations, WPT is un-
stable with respect to small shifts and suffers from a poor directional selectivity. To
overcome this, Kingsbury (1999) designed a discrete wavelet transform where images are
decomposed in a redundant frame of nearly-analytic, complex-valued waveforms. It was
later extended to the wavelet packet framework (Bayram and I. W. Selesnick, 2008), giv-
ing birth to the dual-tree complex wavelet packet transform (DT-CWPT), described in
Section 3.3.4. In the following, we use the notations introduced in Section 3.3 (complex
wavelet transforms).

Based on Lemma 4.7, the following proposition introduces two arrays of complex ker-
nels W↗(J) :=

(
W↗(J)

l

)
l∈{0..4J −1} and W↘(J) :=

(
W↘(J)

l

)
l∈{0..4J −1}, characterizing DT-

CWPT when the decomposition is performed in a pseudo-local cosine frame (3.101). A
graphical representation of these kernels is provided in Figure 4.4 (right) with J = 2.

Proposition 4.8. For any l ∈
{
0 . . 4J − 1

}
,

D↗(J)
l =

(
X ∗W↗(J)

l

∗)
↓ 2J , with W↗(J)

l := E↗(J)
l, 0 , (4.204)

where E↗(J)
l, 0 (atom of the discrete frame) and D↗(J)

l ∈ l2C(Z2) (feature map of complex
wavelet packet coefficients) satisfy (3.103) and (3.100), respectively, with j ← J . Identical
results are obtained with the three other Fourier quadrants.

Proof. For each of the four filter banks m ∈ {0 . . 3}, and any channel l ∈
{
0 . . 4J − 1

}
,

Lemma 4.7 provides a convolution kernel V[m](J)
l ∈ l2R(Z2) such that

D[m](J)
l =

(
X ∗V[m](J)

l

)
↓ 2J . (4.205)

Then, we insert (4.205) into (3.100) for all m ∈ {0 . . 3}. Finally, the expression of E↗(J)
l, 0

in (3.103) yields the result.
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Remark 4.10. To ease implementation, we have considered a variant of DT-CWPT
where the low-frequency atoms E↗(J)

0, n and E↘(J)
0, n are complex-valued. This is different

from Section 3.3.4, where the low-frequency atoms E(J)
0, n remained real-valued (3.101).

Remark 4.11. A similar result can be obtained in the continuous framework:

D↗(J)
l [n] =

(
F ∗ Ψ↗(J)

l

∗)
(2Jn), with Ψ

↗(J)
l := Ψ

↗(J)
l, 0 , (4.206)

where, as introduced in Section 3.3.3, F ∈ L2
R(R2) denotes the continuous function from

which X ∈ l2R(Z2) is uniformly sampled, and Ψ
↗(J)
l, 0 , satisfying (3.104), is an atom of the

wavelet packet tight frame Ψ
(J)
C introduced in (3.102).

Remark 4.12. Since input images are real-valued, we can discard the kernels W↙(J)
l and

W↖(J)
l without loss of information, because the corresponding feature maps of wavelet

packet coefficients, D↙(J)
l and D↖(J)

l , are simply the complex conjugates of D↗(J)
l and

D↘(J)
l , respectively.

4.6.2 Gabor-Like Convolution Kernels

We now show that the convolution kernels W↗(J)
l and W↘(J)

l , introduced in (4.204),
approximately behave as Gabor-like filters, as defined in (4.12). To begin with, we assume
that h[0] is a Shannon filter, satisfying (3.58). Let J ∈ N \ {0} denote the number of
decomposition stages. The following proposition states that DT-CWPT tiles the frequency
plane with square windows.

Proposition 4.9. There exists a permutation
(
σ

(J)
l

)
l∈{0..4J −1} of

{
0 . . 2J −1

}2 such that,
for any l ∈

{
0 . . 4J − 1

}
,

Ψ
↗(J)
l ∈ V

(
θ

(J)
l , κJ

)
, (4.207)

where Ψ↗(J)
l has been introduced in Remark 4.11, and where we have defined

θ
(J)
l :=

(
σ

(J)
l + 1

2

)
π

2J
and κJ := π

2J
. (4.208)

We remind the reader that V
(
ν, ε

)
, defined in (4.7), denotes a space of Gabor-like filters

in the continuous framework.

Proof. From the construction of the wavelet packet tight frame presented in Section 3.3.4,
we can show that Ψ↗(J)

l is the tensor product of two 1D wavelet packets:

Ψ
↗(J)
l = ψ

(J)
l1
⊗ ψ(J)

l2
, (4.209)

for some indices l1 and l2 ∈
{
0 . . 2J − 1

}
. Moreover, for any l′ ∈

{
0 . . 2J − 1

}
, we have

ψ
(J)
l′ = ψ

[0](J)
l′ + i ψ

[1](J)
l′ , (4.210)
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where ψ[0](J)
l′ ∈ L2

R(R) is an atom of the standard Shannon wavelet packet orthonormal
basis, and ψ

[1](J)
l′ is the Hilbert transform of ψ[0](J)

l′ , as defined in (3.76). Therefore, since
the Hilbert transform suppresses negative frequencies, we get

ψ̂
(J)
l′ = 2 ψ̂[0](J)

l′ 1R+ . (4.211)

Consequently, according to the Coifman-Wickerhauser theorem (Mallat, 2009, pp. 384-
385), there exists k ∈

{
0 . . 2J − 1

}
such that

supp ψ̂(J)
l′ ⊂

[
kπ

2J
,

(k + 1)π
2J

]
. (4.212)

Finally, the tensor product (4.209) yields the result.

According to Proposition 4.9, each atom Ψ
↗(J)
l , for l ∈

{
0 . . 4J − 1

}
, is supported in a

square window of size κJ × κJ included in the top-right quadrant of the Fourier domain.
Similar results can be obtained for the three remaining quadrants, with Ψ↘(J)

l , Ψ↙(J)
l and

Ψ
↖(J)
l . Using the analogy between (4.204) and (4.206), we would like to deduce from

Proposition 4.9 that the discrete filter W↗(J)
l ∈ l2C(Z2) satisfies

W↗(J)
l ∈ J

(
θ

(J)
l , κJ

)
, (4.213)

which is a space of Gabor-like filters in the discrete framework (4.12). However, as men-
tioned in Remark 3.6 (p. 52), a “perfect” dual-tree transform should be initialized with
four different inputs X[0−3]. Instead, all four WPT decompositions are performed on the
same input X. Consequently, DT-CWPT is not perfectly analytic and (4.213) is only valid
asymptotically, when J goes to ∞. In fact, the Fourier support of W↗(J)

l is contained
in four square regions of size κJ (one in each quadrant), its energy becoming negligible
outside the top-right quadrant when J increases. Nevertheless, employing, in the first
stage, a specific pair of low-pass filters satisfying the one-sample delay condition (3.93)
yields near-analytic solutions even for small values of J . We therefore consider (4.213) as
a reasonable approximation if J ≥ 2.

Remark 4.13. Proposition 4.9 tiles the top-right Fourier quadrant with 4J square cells
of size κJ := π/2J . However, as explained in Section 3.2.4, the Shannon wavelet is poorly
suited for sparse image representations, because of its slow rate of decay. Moreover, it
deviates from what is typically observed in freely-trained CNNs, because W↗(J)

l must be
approximated with very large filters to avoid numerical instabilities. Practical implemen-
tations of DT-CWPT use fast-decaying filters such as these associated to Meyer wavelets
(3.59), or finite-length filters that approximate the half-sample delay condition (I. W. Se-
lesnick et al., 2005). Therefore, energy is leaking outside the square cells tiling the Fourier
domain. To counterbalance this, we increase the window size up to

κJ := π

2J−1 = π/mJ , (4.214)

and consider that (4.213) remains a reasonable approximation. Therefore, the conditions
to apply Theorems 4.1 to 4.3 are approximately satisfied in this context.
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Depth J Bandwidth κJ Mean Std
2 π/2 0.98 0.00
3 π/4 0.95 0.02

Table 4.1. Energy concentration of the DT-CWPT filters within a Fourier window of size κJ ×κJ ,
with κJ := π/2J−1.

In order to numerically assess this assumption, we measured the maximum percentage
of energy within a square window of size κJ × κJ in the Fourier domain:

ρ↗
l :=

maxθ∈[−π, π]2
∥∥∥1B∞(θ, κJ /2)Ŵ

↗(J)
l

∥∥∥2

L2∥∥∥Ŵ↗(J)
l

∥∥∥2

L2

, (4.215)

where the l∞-ball B∞(θ, κJ/2) is defined in the quotient space [−π, π]2 /(2πZ2), as ex-
plained in Remark 4.2 (p. 69). If (4.213) is perfectly satisfied, then ρ↗

l = 1. The statistics
computed over the collection

(
ρ↗

l , ρ
↘
l

)
l∈{0..4J −1} are reported in Table 4.1.

Remark 4.14. For “boundary filters”, i.e., when
∥∥θ(J)

l

∥∥
∞ =

(
1− 2−(J+1))π, Remark 4.2

states that a small fraction of the filter’s energy remains located at the far end of the
Fourier domain—see also Bayram and I. W. Selesnick (2008). Therefore, these filters do
not strictly comply with the conditions of Theorems 4.1 to 4.3. We nevertheless include
them in our experiments.

4.6.3 DT-CWPT-Based RMax and CMod Operators

According to (4.204), (4.213) and (4.214), we can apply Theorems 4.1 to 4.3 to the dual-
tree framework. More precisely, for any output channel l ∈

{
0 . . 4J − 1

}
, we consider the

following RMax and CMod operators:

Umax↗
l : X 7→ MaxPool

((
X ∗ Re W↗(J)

l

)
↓ 2J−1

)
; (4.216)

Umod↗
l : X 7→

∣∣∣(X ∗W↗(J)
l

)
↓ 2J

∣∣∣. (4.217)

Using the notations introduced in (4.3) and (4.1), we have

Umax↗
l = Umax

mJ

[
W↗(J)

l

]
and Umod↗

l := Umod
mJ

[
W↗(J)

l

]
, (4.218)

where we have defined mJ := 2J−1. Note that, following Remark 4.8, we have omitted
the grid half-size q, which is equal to 1 (max pooling operates on a grid of size 3 × 3).
Furthermore, for the sake of brevity, we have omitted the depth J in the above notations.

Remark 4.15. Both Umax↗
l and Umod↗

l are implemented using DT-CWPT with J de-
composition stages. However, in (4.216), the subsampling factor is equal to 2J−1, instead
of 2J , as stated in Proposition 4.8. In order to accommodate this property of RMax op-
erators, the last stage of DT-CWPT decomposition is carried out without subsampling,
resulting in higher redundancy. This is similar to the concept of stationary wavelet trans-
form as described by Nason and Silverman (1995). Furthermore, only the real component
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(a) RMax (b) CMod

Figure 4.5. Detailed illustration of the RMax (a) and CMod (b) operators based on DT-CWPT,
with J = 3 decomposition stages. The numbers between modules correspond to the number of
feature maps, height and width. The orange modules represent subsampled convolutions using one
of the four 2D filter banks G[0−3], such as introduced in (3.20). The FB index is indicated between
square brackets. The RMax model (a) only computes the real part of the dual-tree coefficients, and
the last stage of decomposition is performed without subsampling (red modules). Additionally, the
blue modules represent linear combinations of feature maps such as described in (3.100).

of the wavelet feature maps is preserved. On the other hand, Umod↗
l implements a fully-

decimated wavelet packet transform, and keeps both real and imaginary parts. Figure 4.5
illustrates these technical details.

4.6.4 Experiments and Results

We implemented the RMax and CMod operators Umax↗
l and Umod↗

l , as introduced in
(4.216) and (4.217), with both J = 2 and 3 stages of wavelet packet decomposition.
To cover the whole frequency plane, we also implemented similar operators, denoted by
Umax↘

l and Umod↘
l . They are associated with the convolution filters W↘(J)

l , introduced
in Proposition 4.8, with energy being located in the bottom-right quadrant. However, as
explained in Remark 4.12, we did not need to deal with the two other quadrants (negative
x-values), since input images are real-valued. Using the validation set of ImageNet-1K
(Russakovsky et al., 2015), (N := 50 000 images), we measured the mean discrepancy
between RMax and CMod outputs, and evaluated the shift invariance of both models.
Dual-tree decompositions have been performed with Q-shift orthogonal filters of length 10
(Kingsbury, 2003), which approximately meets the half-sample delay condition (3.91).

Discrepancies between RMax and CMod. Each image n ∈ {0 . . N − 1} in the
dataset was converted to grayscale, from which a center crop of size 224×224 was extracted.
We denote by Xn ∈ l2R(Z2) the resulting input feature map. For any l ∈

{
0 . . 4J − 1

}
, we

denote by
Ymax↗

nl := Umax↗
l (Xn) and Ymod↗

nl := Umod↗
l (Xn) (4.219)
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Figure 4.6. Empirical estimates of the normalized mean squared error between RMax and CMod
outputs, computed on ImageNet-1K (validation set). For each channel l ∈

{
0 . . 4J − 1

}
, ρ̃↗2

l

is plotted as a grayscale pixel centered in θ
(J)
l such as introduced in Proposition 4.9 (top-right

quadrant). Similarly, ρ̃↘2
l is plotted in the bottom-right quadrant. Finally, the bottom- and

top-left quadrants (ρ̃↙2
l and ρ̃↖2

l ) are simply obtained by symmetrizing the figures. Since the
subsampling factor mJ is equal to 2J−1, these experimental results can be compared with the left
and right parts of Figure 4.3.

(a) RMax operators

(b) CMod operators

Figure 4.7. Shift invariance of RMax and CMod outputs, computed on ImageNet 2012 (validation
set). For each l ∈

{
0 . . 4J − 1

}
, ρ̃max↗

l (Figure 4.7a) and ρ̃mod↗
l (Figure 4.7b) are plotted by

applying the same procedure as in Figure 4.6.
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the outputs of the l-th RMax and CMod operators as defined in (4.216) and (4.217),
respectively. We adopt similar notations for the bottom-right Fourier quadrant. Then,
the normalized mean squared error between Ymod↗

nl and Ymax↗
nl was computed. It is

defined by the square of

ρ↗
nl :=

∥∥Ymod↗
nl −Ymax↗

nl

∥∥
2/
∥∥Ymod↗

nl

∥∥
2. (4.220)

Finally, the for each output channel l, an empirical estimate for E
[
P̃2

X
]
, introduced in

(4.133), was obtained by averaging ρ↗2
nl over the whole dataset. We denote by ρ̃↗2

l the
corresponding quantity.

Since Umax↗
l and Umod↗

l are parameterized by W↗(J)
l , it follows that ρ̃↗2

l depends
on the filter’s characteristic frequency θ

(J)
l (4.213). According to Proposition 4.9, these

frequencies form a regular grid in the top-right quadrant of Fourier domain. This provides
a visual representation of ρ̃↗2

l , as shown in Figure 4.6. This figure also displays ρ̃↘2
l ,

corresponding to the bottom-right quadrant. The half-plane of negative x-values has
simply been symmetrized, following Remark 4.12. We can observe a regular pattern of
dark spots. More precisely, high discrepancies between max pooling and modulus seem
to occur when the energy of W↗(J)

l or W↘(J)
l overlaps a dark region of Figure 4.3. This

result corroborates Theorem 4.3, which states that high discrepancies are expected for
certain pathological frequencies, due to the search for a maximum value over a discrete
grid.

Shift invariance. For each input image previously converted to grayscale, two crops
of size 224 × 224 were extracted, such that the corresponding sequences Xn and X′

n are
shifted by one pixel along the x-axis. From these inputs, the following quantity was then
computed:

ρmax↗
nl :=

∥∥Ymax′↗
nl −Ymax↗

nl

∥∥
2 /
∥∥Ymod↗

nl

∥∥
2, (4.221)

where Ymax′↗
nl satisfies (4.218) with Xn ← X′

n. Finally, for each output channel l ∈{
0 . . 4J − 1

}
, an empirical estimate for E

[
R̃X, u

]
, satisfying (4.178) with u = (1, 0)⊤, was

obtained by averaging ρmax↗
nl over the whole dataset. We denote by ρ̃max↗

l the corre-
sponding quantity. We point out that shift invariance is measured relatively to the norm
of the CMod output, as explained in Remark 4.7.

On the other hand, the same procedure was applied to the CMod operators:

ρmod↗
nl :=

∥∥Ymod′↗
nl −Ymod↗

nl

∥∥
2 /
∥∥Ymod↗

nl

∥∥
2, (4.222)

and ρ̃mod↗
l was obtained as before by averaging ρmod↗

nl over the whole dataset.
A visual representation of ρ̃max↗

l and ρ̃mod↗
l are provided in Figure 4.7 (as well as the

other Fourier quadrants). Two observations can be drawn here. (1) When the filter is
horizontally oriented, the corresponding output is highly stable with respect to horizontal
shifts. This can be explained by noticing that such kernels perform low-pass filtering along
the x-axis. The exact transposed phenomenon occurs for vertical shifts. (2) Elsewhere,
we observe that high discrepancies between RMax and CMod outputs (Figure 4.6) are
correlated with shift instability of RMax (Figure 4.7, top). This is in line with (4.162)
and (4.179) in Theorems 4.2 and 4.3. Note that CMod outputs are nearly shift invariant
regardless the characteristic frequency θ

(J)
l (Figure 4.7, bottom), as predicted by Theo-

rem 4.1 (4.61).
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4.7 Concluding Remarks

In this chapter, we explored the shift invariance properties captured by the max pooling
operator, when applied on top of a convolution layer with Gabor-like kernels. We estab-
lished a validity domain for near-shift invariance and confirmed our predictions through
an experimental setting based on the dual-tree complex wavelet packet transform. Our
results indicate that the CMod operator can serve as a proxy for RMax, extracting com-
parable, yet more stable features. This suggests a promising approach for improving shift
invariance in CNNs while preserving high-frequency information. This is the main focus
of Chapter 5, in which we apply these “antialiasing” principles to real-life architectures.

4.A Appendix: Theoretical Foundations for our
Hypotheses

In this section, we provide theoretical arguments for justifying Hypotheses 4.2 and 4.3.
Given n ∈ N \ {0}, we define n-th order stationarity of a given stochastic process F as
stated by K. I. Park and M. Park (2018, p. 152): for any n′ ∈ {0 . . n− 1}, (x1, . . . , xn′) ∈
(R2)n′ and h ∈ R2, the joint distribution of

(
F(x1), . . . , F(xn′)

)
is identical to the one

of
(
F(x1 + h), . . . , F(xn′ + h)

)
. Besides, strict-sense stationarity is defined as n-th order

stationarity for any n ∈ N \ {0}.
We recall that ν := θ/s. We then state the following results.

Proposition 4.10. We assume that FX is first-order stationary. If, for any x ∈ R2 and
any h ∈ B2(2π/ ∥ν∥2),

(ThFX ∗ ΨW)(x) = ei⟨ν, h⟩(FX ∗ ΨW)(x), (4.223)

then Hypothesis 4.2 is satisfied.

Proof. Let x ∈ R2. By design (see Remark 4.6), ZX(x) follows a uniform conditional
probability distribution on S1, given MX(x) = 0. In any other cases, we show that the
conditional probability measure of ZX(x) given MX(x) > 0 is invariant with respect to
phase shifts, and is therefore equal to the uniform probability measure on S1. Specifically,
we show that, for any measurable set A ⊂ S1,

∀ω ∈ [0, 2π] , µ(A) = µ(eiωA), (4.224)

where we have denoted

µ : A 7→ P {ZX(x) ∈ A | MX(x) > 0} . (4.225)

Let h ∈ B2(2π/ ∥ν∥2). According to (4.223), and assuming MX(x) > 0, we get

ZX(x) ∈ A ⇐⇒ ThZX(x) ∈ ei⟨ν, h⟩A. (4.226)

Therefore,

P {ZX(x) ∈ A | MX(x) > 0} = P
{
ThZX(x) ∈ ei⟨ν, h⟩A

∣∣ MX(x) > 0
}
. (4.227)
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Since FX is first-order stationary, ZX(x) and ThZX(x) have the same conditional proba-
bility distribution given MX(x) > 0. Thus we get

P {ZX(x) ∈ A | MX(x) > 0} = P
{
ZX(x) ∈ ei⟨ν, h⟩A

∣∣ MX(x) > 0
}
. (4.228)

Let ω ∈ [0, 2π]. Considering h := ω ν/ ∥ν∥22, we have

h ∈ B2(2π/ ∥ν∥2) and ⟨ν, h⟩ = ω. (4.229)

Therefore,

∀ω ∈ [0, 2π] , P {ZX(x) ∈ A | MX(x) > 0} = P
{
ZX(x) ∈ eiωA

∣∣ MX(x) > 0
}
, (4.230)

which yields (4.224).
Any probability measure defined on S1 is a Radon measure. Therefore, according to

Haar’s theorem (Halmos, 2013), there exists a unique probability measure on S1 satisfying
(4.224). Since the uniform probability measure is also invariant to phase shifts, we deduce
that ZX(x) is uniformly distributed on S1, conditionally to MX(x) > 0, which concludes
the proof.

Proposition 4.11. We assume the conditions of Proposition 4.10 are met. If, moreover,
FX is strict-sense stationary, then Hypothesis 4.3 is satisfied.

Proof. Let n ∈ N \ {0} and x, y0, . . . , yn−1 ∈ R2. To alleviate notations, we consider
the random vector M =

(
MX(y0), . . . , MX(yn−1)

)⊤ with outcomes in Rn
+. According to

(4.128), ZX(x) is conditionally independent of M given MX(x) = 0. Therefore, it remains
to prove conditional independence given MX(x) > 0.

The proof is organized as follows. Using a similar reasoning as Proposition 4.10,
we show that, for any measurable subset S ⊂ Rn

+, ZX follows a uniform probability
distribution conditionally to M ∈ S and MX(x) > 0. Since we already know that ZX
follows a uniform distribution conditionally to MX(x) > 0 alone, we deduce that ZX and
M are conditionally independent given MX(x) > 0.

Let A ⊂ S1 and S := (Si)i∈{0..n−1} ⊂ Rn
+ denote measurable sets. According to

(4.223), and assuming MX(x) > 0, we get, for any h ∈ B2(2π/ ∥ν∥2),

ZX(x) ∈ A ⇐⇒ ThZX(x) ∈ ei⟨ν, h⟩A; (4.231)
MX(yi) ∈ Si ⇐⇒ ThMX(yi) ∈ Si ∀i ∈ {0 . . n− 1} . (4.232)

Therefore,

P
{

(ZX(x) ∈ A) & (M ∈S)
∣∣∣ MX(x) > 0

}
= P

{(
ThZX(x) ∈ ei⟨ν, h⟩A

)
& (ThM ∈S)

∣∣∣ MX(x) > 0
}
. (4.233)

Since FX is strict-sense stationary, the joint conditional probability density of

ThZX(x), ThMX(y0), . . . , ThMX(yn−1) (4.234)

is identical to the one of

ZX(x), MX(y0), . . . , MX(yn−1). (4.235)
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Therefore we get

P
{

(ZX(x) ∈ A) & (M ∈S)
∣∣∣ MX(x) > 0

}
= P

{(
ZX(x) ∈ ei⟨ν, h⟩A

)
& (M ∈S)

∣∣∣ MX(x) > 0
}
. (4.236)

We assume that P(M ∈ S) > 0. According to the above expression, and similarly to
the proof of Proposition 4.10, we get,

∀ω ∈ [0, 2π] , P
{

ZX(x) ∈ A
∣∣∣ (M ∈S) & (MX(x) > 0)

}
= P

{
ZX(x) ∈ eiωA

∣∣∣ (M ∈S) & (MX(x) > 0)
}
. (4.237)

Then, the above conditional probability measure satisfies phase shift invariance (4.224).
Therefore, as in the proof of Proposition 4.10, Haar’s theorem implies that ZX(x) follows
a uniform conditional distribution given M ∈S and MX(x) > 0.

Moreover, strict-sense implies first-order stationarity, and thus, according to the proof
of Proposition 4.10, ZX(x) follows a uniform distribution conditionally to MX(x) > 0.
Therefore we get, for any measurable sets A ⊂ S1 and S ⊂ Rn

+ such that P(M ∈S) > 0,
P
{
ZX(x) ∈ A

∣∣ (M ∈S) & (MX(x) > 0)
}

= P
{
ZX(x) ∈ A

∣∣ MX(x) > 0
}
, (4.238)

which proves conditional independence between ZX(x) and M given MX(x) > 0, and
concludes the proof.

Remark 4.16 (Stationarity hypothesis). Strict-sense stationarity suggests that any trans-
lated version of a given image is equally likely. In reality, this statement is too strong,
for several reasons. First, by construction, X has all its realizations in L2

R(R2). In that
context, a stationary process yields outcomes which are zero almost everywhere. Besides,
depending on which category the image belongs to, the pixel distribution is likely to vary
across various regions. For instance, we can expect the main subject to be located at the
center of the image. More details on statistical properties of images from natural versus
man-made objects can be found in a paper by Torralba and Oliva (2003). Nevertheless,
this hypothesis will be considered as a reasonable approximation if the shift is much smaller
than the image “characteristic” size in the continuous domain; i.e., if

∥h∥2 ≪ sN, (4.239)
where, as a reminder, N denotes the support size of input images. We refer the reader to
Tygert et al. (2016) for a related notion of local stationarity. As it turns out, the proofs
of Propositions 4.10 and 4.11 only requires shifts with ∥h∥2 ≤ 2π/ ∥ν∥2. Therefore, the
constraint on ∥θ∥2 stated in (4.131) implies (4.239), and the stationarity hypothesis holds.
Remark 4.17 (Justification for (4.223)). We consider

ΦW : x 7→ ΨW(x)e−i⟨ν, x⟩. (4.240)
Similarly to Lemma 4.1, we can show that ΦW is a low-pass filter, with supp Φ̂W ⊂
B∞(ε/2). For all h ∈ R2 such that ∥h∥2 ≤ 2π/ ∥ν∥2, we have

(ThFX ∗ ΨW)(x) =
∫∫

R2
ThFX(x− y)ΦW(y) e−i⟨ν, y⟩ d2y

= ei⟨ν, h⟩
∫∫

R2
FX(x− y′)ΦW(y′ − h) e−i⟨ν, y′⟩ d2y′.
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Since supp Φ̂W ⊂ B∞
(

κ
2s

)
, we can define a “minimal wavelength” λΦW := 2πs/κ. Then,

if ∥h∥2 ≪ λΦW , we can approximate ΦW(y′ − h) ≈ ΦW(y′). This sufficient condition is
actually met, because ∥h∥2 ≤ 2π/ ∥ν∥2 and, according to (4.132), ∥ν∥2 ≫ κ/s. Therefore,

(ThFX ∗ ΨW)(x) ≈ ei⟨ν, h⟩(FX ∗ ΨW)(x). (4.241)

As explained in Remarks 4.16 and 4.17, the sufficient conditions outlined in Proposi-
tions 4.10 and 4.11 are not strictly met. Nevertheless, we consider that Hypotheses 4.2
and 4.3 still provide a reasonable description of the distribution from which input images
are drawn.
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Chapter 5

Shift-Invariant Twin Models Based
on Complex Wavelets

Translation invariance in CNNs is often taken for granted. This misconception
comes from the equivariance property of convolutions in the continuous domain:
convolutions commute with translations. In this context, shifting an input will re-

sult in an equally shifted output. Under this assumption, Wiatowski and Bölcskei (2018)
showed that a wide variety of models becomes progressively more shift invariant with
increasing network depth. However, the situation changes when working on discrete se-
quences. Subsampling operations, typically found in convolution and pooling layers, are
an important source of instability—a phenomenon known as aliasing, as discussed in Sec-
tion 2.4.2 and illustrated in Figure 3.3 in the context of wavelet transforms.

This chapter introduces a novel antialiasing method to increase shift invariance and
prediction accuracy in CNNs. Specifically, we replace the first-layer combination “real-
valued convolutions → max pooling” (RMax) by “complex-valued convolutions → mod-
ulus” (CMod), which is stable to translations. This approach is justified by our findings
from Chapter 4. Specifically, CMod and RMax produce comparable outputs when the
convolution kernel is band-pass and oriented (Gabor-like filter). In this context, CMod
can be considered as a stable alternative to RMax. Thus, prior to antialiasing, we force
the convolution kernels to adopt such a Gabor-like structure. The corresponding architec-
ture is called mathematical twin, because it employs a well-defined mathematical operator
to mimic the behavior of the original, freely-trained model. By retaining high-frequency
details, our antialiasing approach achieves a better balance between shift invariance and
information preservation, compared to concurrent methods based on low-pass filtering.
This results in improved classification accuracy on ImageNet and CIFAR-10, with a lower
computational cost and memory footprint.

This contribution chapter is a synthesis of the following two papers:

• H. Leterme, K. Polisano, V. Perrier, and K. Alahari (2021). “Modélisation Parci-
monieuse de CNNs Avec Des Paquets d’Ondelettes Dual-Tree”. In: ORASIS.

• H. Leterme, K. Polisano, V. Perrier, and K. Alahari (2023). “From CNNs to Shift-
Invariant Twin Models Based on Complex Wavelets”. arXiv: 2212.00394.
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CHAPTER 5. SHIFT-INVARIANT TWIN MODELS

5.1 Existing vs Proposed Antialiasing Methods

Blurpooled CNNs. To improve stability to translations in CNNs, a line of work is
focused on designing antialiasing methods based on low-pass filtering, also called blur
pooling in this context. As discussed in Section 2.4.2, this approach is inspired by the
Nyquist-Shannon sampling theorem (Shannon, 1949), which implies that high-frequency
signals must be blurred before subsampling, in order to avoid artifacts in reconstruction.
R. Zhang (2019) was the first paper to introduce blur pooling in CNNs, using linear con-
volutions with fixed filters. Later, X. Zou et al. (2023) enhanced the method by using a
nonlinear, adaptive blur pooling layer, thus preserving high-frequency information when
necessary. In this nonlinear setting, the blurring filter varies across channels and image lo-
cations, therefore preserving high-frequency information in strategic zones. Albeit achiev-
ing higher prediction accuracy, this approach remains fundamentally based on low-pass
filtering. Consequently, features that are not blurred may still be unstable to translations.
Furthermore, adaptive blur pooling requires additional memory, computational resources,
and trainable parameters.

Proposed Approach. In this chapter, we propose an alternative antialiasing approach
based on complex-valued convolutions, extracting high-frequency features that are stable
to translations. We observed improved accuracy for ImageNet and CIFAR-10 classifica-
tion, compared to the two above antialiasing methods. Furthermore, our approach offers
significant advantages in terms of computational efficiency and memory usage, and does
not induce any additional training, unlike adaptive blur pooling.

Our proposed method replaces the first layers of a CNN:

Conv→ Sub→ Bias→ ReLU→ MaxPool, (5.1)

equivalently written as

Conv→ Sub→ MaxPool→ Bias→ ReLU, (5.2)

by the following combination:

CConv→ Sub→ Modulus→ Bias→ ReLU, (5.3)

where CConv denotes a convolution operator with a complex-valued kernel, whose real
and imaginary parts approximately form a 2D Hilbert transform pair (Havlicek et al.,
1997). From (5.2) and (5.3), we introduce the two following operators:

RMax : Conv→ Sub→ MaxPool; (5.4)
CMod : CConv→ Sub→ Modulus. (5.5)

This method is motivated by our theoretical contribution presented in Chapter 4: when
the convolution kernel is band-pass and oriented (Gabor-like filter), the CMod operator
can be considered as a proxy for RMax, extracting comparable, yet more stable features.
In compliance with these results, the RMax-CMod substitution is only applied to the out-
put channels associated with Gabor-like filters which, as explained in Section 2.4.1, arise
spontaneously in the first layer of CNNs trained on image datasets. In this chapter, we
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enforce this property by applying additional constraints to the original model, prior to
antialiasing. Specifically, a predefined number of convolution kernels are guided to adopt
Gabor-like structures, instead of letting the network learn them from scratch. For this pur-
pose, we rely on the dual-tree complex wavelet packet transform (DT-CWPT), presented
in Section 3.3. Throughout the chapter, we refer to this constrained model as a mathemat-
ical twin, because it employs a well-defined mathematical operator to mimic the behavior
of the original model. In this context, replacing RMax by CMod is straightforward, since
the complex-valued filters are provided by DT-CWPT.

Other Related Work. As mentioned in Section 2.4.2, Chaman and Dokmanic (2021)
designed a perfectly shift-invariant architecture using an adaptive, input-dependent sub-
sampling grid. However, this approach is not intended to compete with other antialiasing
methods, but rather to complement them at the subsampling stages.

Comparable to our work, wavelet scattering networks (ScatterNets), described in Sec-
tion 3.4, also take advantage of complex-valued convolutions to produce shift-invariant
image representations that are stable to deformation and preserve high-frequency infor-
mation. However, as mentioned in Section 3.5.3, comparing complex-valued ScatterNets
and real-valued CNNs is not straightforward, due to the differences in their architectural
design. In contrast, owing to the proximity between the RMax and CMod operators, our
models are enhanced versions of existing networks, rather than ad hoc constructions. This
allows drawing a bond between the real and complex worlds, and to compare RMax- and
CMod-based models in terms of prediction accuracy and shift invariance.

Finally, we draw the reader’s attention to the family of complex-valued convolutional
neural networks (CVCNNs), presented in Section 2.3.3. These models are tailored for
tasks where preserving the phase information is essential to achieve high performances,
but do not perform better than standard CNNs on image classification tasks. Conversely,
our approach discards the phase information by computing the modulus. In summary,
CVCNNs and our models, although both employing complex-valued convolutions, are
suited for different contexts.

5.2 Subject of Study: First Layers in CNNs

Throughout the chapter, we use the notations introduced in Section 4.2.1. Our study deals
with the initial layers of a CNN as sketched in (5.1). A convolution layer with K input
channels, L output channels and subsampling factor m ∈ N \ {0} is parameterized by a
weight tensor V := (Vlk)l∈{0..L−1}, k∈{0..K−1} ∈ l2R(Z2)L×K . For any multichannel input
X := (Xk)k∈{0..K−1} ∈ l2R(Z2)K , the corresponding output Y := (Yl)l∈{0..L−1} ∈ l2R(Z2)L

is defined such that, for any output channel l ∈ {0 . . L− 1},

Yl :=
K−1∑
k=0

(Xk ∗Vlk) ↓ m =
K−1∑
k=0

(Xk ⋆Vlk) ↓ m. (5.6)

From now on, we shall employ the cross-correlation product ⋆, instead of the convolution
product ∗, for the sake of convenience.

In AlexNet and ResNet, K = 3 (RGB input images), L = 64. Furthermore, in AlexNet,
the weight tensor V is supported in a region of size 11 × 11 and the subsampling factor
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m (stride) is equal to 4. ResNet models use kernels of size 7× 7 with m = 2. Next, a bias
b := (b1, · · · , bL)⊤ ∈ RL is applied to Y, which is then transformed through nonlinear
ReLU and max pooling operators. The activated outputs satisfy

Amax
l := MaxPool (ReLU(Yl + bl)) , (5.7)

where MaxPool has been introduced in (4.2) with q = 1 (see Remark 4.8), and ReLU is
defined such that, for any Y ∈ l2R(Z2) and any n ∈ Z2,

ReLU(Y)[n] := max
(
0,Y[n]

)
. (5.8)

Expression (5.7) also employs the bias notation introduced in (2.48).
For any output channel l ∈ {0 . . L− 1}, we denote by

Ṽl := 1
K

K−1∑
k=0

Vlk (5.9)

the mean kernel computed over the input channels. This operation is justified by the
monochrome hypothesis stated in Hypothesis 4.4 for Gabor-like kernels, and experimen-
tally assessed in Section 5.3.2. We now consider, as in Section 4.2.2, an analytic complex-
valued companion of Ṽl, denoted by W̃l ∈ l2C(Z2), obtained by setting to zero the kernel’s
discrete-time Fourier transform on half of the frequency plane. More specifically, we denote
by ul ∈ R2 the dominant eigenvector of the structure tensor associated with Ṽl (Bigun
et al., 1991). This unit vector is, by design, orthogonal to the filter’s orientation. Then,
W̃l is defined by

W̃l := Ṽl + iHul
(Ṽl), (5.10)

where Hul
denotes a two-dimensional Hilbert transform, adapted from Havlicek et al.

(1997). It satisfies, for any unit vector u ∈ R2, real-valued sequence V ∈ l2R(Z2) and
frequency ω ∈ [−π, π]2,

Ĥu(V)(ω) := −i sgn⟨ω, u⟩ · V̂(ω). (5.11)

The Hilbert transform is designed such that the Fourier transform of W̃l is entirely sup-
ported in the half-plane

{
ω ∈ [−π, π]2

∣∣ ⟨ω, ul⟩ ≥ 0
}
. Therefore, if Ṽl is band-pass and

oriented (Gabor-like filter), then the energy of W̃l is concentrated in a small window in
the Fourier domain, as depicted in Figure 5.1d. Finally, for any k ∈ {0 . .K − 1} and
l ∈ {0 . . L− 1}, we construct the complex-valued companions of Vlk ∈ l2R(Z2):

Wlk := Vlk + iHul
(Vlk). (5.12)

Remark 5.1. The 2D Hilbert transform as defined in (5.11) spawns a linear boundary
which is orthogonal to u, referred to as the cut-off boundary. If the Fourier support of Ṽl

overlaps this boundary, then W̃l will not have the “well-behaved” frequency-localization
property observed in Figure 5.1d. To avoid this shortcoming, we have chosen u := ul to
be orthogonal to the filter’s orientation.
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(a) (b) (c) (d)

Figure 5.1. (a), (b): Real and imaginary parts of the Gabor-like filter W̃l from AlexNet, satisfying
(5.10) with l = 14 (see also Figure 5.2a). (c), (d): Magnitude spectra (modulus of the Fourier
transform) of Ṽl and W̃l, respectively.

5.3 Applicability of our Theoretical Results to CNNs
Before delving deeper into our antialiasing approach, we assess whether the theoretical re-
sults established in Section 4.5 are applicable to freely-trained CNNs. Considering AlexNet
and ResNet-34 trained with ImageNet ILSVRC 2012-2017 (Russakovsky et al., 2015), also
called ImageNet-1K, we experimentally verify that a substantial number of convolution
kernels in the first layer are monochrome and Gabor-like. Specifically, we check that, for a
certain number of output channels l ∈ {0 . . 63}, Hypotheses 4.4 and 4.5 are approximately
satisfied.

5.3.1 Identifying the Gabor-like Kernels

To conduct our experiments, the first action was to identify the Gabor-like kernels in
the first layer. To this end, we applied the following procedure. For any output channel
l ∈ {0 . . 63}, we denote by Ṽl := 1

3
∑2

k=0 Vlk the mean kernel computed over the RGB
input channels. Whether Ṽl has a clearly-defined orientation can be determined by the
coherence index cl ∈ [0, 1] (Bigun et al., 1991), defined by

cl := (λl, 0 − λl, 1)/(λl, 0 + λl, 1) ∈ [0, 1] , (5.13)

where λl, 0 and λl, 1 denote the eigenvalues of the structure tensor associated to Ṽl (see
Remark 5.1), sorted by descending order of their absolute values. To select convolution
kernels with well-defined orientations, we applied a lower threshold on cl, arbitrarily cho-
sen to cinf := 0.8. Furthermore, we removed the low-pass filters by applying an upper
threshold, set to ssup := 0.1, on the normalized Fourier transform at frequency ω = 0,
denoted by

sl :=
∣∣ ̂̃Vl(0)

∣∣/∥∥Ṽl

∥∥
1 ∈ [0, 1] . (5.14)

Subsequently, we obtained a subset G ⊂ {0 . . 63} of Gabor channels, defined by

G := {l ∈ {0 . . 63} | (cl ≥ cinf) and (sl ≤ ssup)} . (5.15)

Figure 5.2 highlights the convolution kernels selected by this method. AlexNet and
ResNet-34 models were trained on ImageNet-1K, following the standard procedure pro-
vided by PyTorch (Paszke et al., 2017).1 The number of Gabor channels is equal to 31 for
AlexNet and 23 for ResNet. We notice that the selected kernels have various frequencies

1The PyTorch “examples” repository is available at https://github.com/pytorch/examples/tree/
main/imagenet
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(a) AlexNet (31 Gabor channels)

(b) ResNet (23 Gabor channels)

Figure 5.2. Convolution kernels in the first layer of AlexNet (a) and ResNet-34 (b), after training
with ImageNet-1K. For each output channel l ∈ {0 . . 63}, the corresponding convolution kernel
(Vlk)k∈{0..2} is displayed as an RGB image in the spatial domain (left), and its associated mag-
nitude spectrum in the Fourier domain (right). The highlighted kernels correspond to the Gabor
channels l ∈ G, empirically determined using the method from Section 5.3.1.

and orientations. Furthermore, by looking at the Fourier transforms, most of them appear
monochrome (not necessarily grayscale), which supports Hypothesis 4.4.2 A more formal
assessment of this hypothesis is presented in Section 5.3.2. Besides, the bandwidth κ ap-
pears larger for ResNet than for AlexNet. Since the latter model has a larger subsampling
factor m than the former (m = 4 vs m = 2), this observation is in line with Hypothe-
sis 4.5, which states that κ ≤ π/m. Again, more precise measurements are presented in
Section 5.3.1.

As evidenced by Figure 5.2, the method has some limitations. First, it is fundamentally
prone to false positives. An example is the kernel in the 5-th row and 4-th column in
Figure 5.2a. We can see from the Fourier transform that it has a well-defined orientation

2The spatial representation of Vlk for l ∈ G sometimes displays two colors. However, this is misleading,
as they correspond to positive and negative values.
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Figure 5.3. Box plots representing the distribution of the normalized mean squared errors εlk ∈
[0, 1] between the convolution kernels Vlk and their projection on RṼl, averaged over the input
RGB channels (ε̃l), for the first convolution layers of AlexNet and ResNet-34 trained on ImageNet-
1K. The data have been split between the Gabor channels l ∈ G and the others. The size of each
statistical sample is indicated between parentheses.

but no clear absolute frequency. Moreover, depending on the chosen thresholds cinf and
ssup, more false positives or false negatives may appear.

5.3.2 Monochrome Kernels

We now experimentally assess Hypothesis 4.4. We consider, for any output channel l ∈
{0 . . 63} and any RGB input channel k ∈ {0 . . 2}, the value of µ ∈ R minimizing

∥∥µṼl −
Vlk

∥∥2
2, denoted by µlk. We then denote by εlk :=

∥∥µlkṼl − Vlk

∥∥2
2/ ∥Vlk∥22 the normalized

mean squared error between Vlk and its projection on RṼl. We get

εlk = 1− ⟨Ṽl, Vlk⟩2∥∥Ṽl

∥∥2
2 · ∥Vlk∥22

. (5.16)

Then, we compute a weighted average over the RGB channels:

ε̃l :=
∑2

k=0 ∥Vlk∥22 · εlk∑2
k=0 ∥Vlk∥22

. (5.17)

For a given output channel l ∈ {0 . . 63}, Hypothesis 4.4 holds if and only if ε̃l = 0.
Figure 5.3 displays the distributions of ε̃l for l ∈ G on the one hand and l ∈ {0 . . 63}\G on
the other hand. We observe that ε̃l ≪ 1 for a large majority of Gabor channels, with some
exceptions for AlexNet. Consequently, we will consider Hypothesis 4.4 as a reasonable
approximation for any Gabor channel l ∈ G.

5.3.3 Kernel Bandwidth

In practice, Hypothesis 4.5 cannot be exactly satisfied. This is because Ṽl = Re W̃l is
finitely supported, and thus its power spectrum cannot be exactly zero on a region with
non-zero measure. To evaluate how close we are to this ideal situation, we measured the
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Figure 5.4. Energy concentration of W̃l within a Fourier window of size κ× κ, with κ := π/m. If
Hypothesis 4.5 is perfectly satisfied, then ρ̃l = 1. Conversely, the lowest possible energy concen-
tration corresponds to ρ̃l = 1/(2m2), i.e., ρ̃l = 1/32 for AlexNet and ρ̃l = 1/8 for ResNet.

maximum percentage of energy within a square window of size κ×κ in the Fourier domain:

ρ̃l :=
maxθ∈[−π, π]2

∥∥∥1B∞(θ, κ/2)
̂̃Wl

∥∥∥2

L2∥∥∥̂̃Wl

∥∥∥2

L2

, (5.18)

where the l∞-ball B∞(θ, κ/2) is defined in the quotient space [−π, π]2 /(2πZ2), as ex-
plained in Remark 4.2. We denote by θl the characteristic frequency of W̃l, for which the
maximum value in (5.18) is reached:

θl := argmaxθ∈[−π, π]2
∥∥∥1B∞(θ, κ/2)

̂̃Wl

∥∥∥2

L2
. (5.19)

The statistical distribution of (ρ̃l)k∈G on the one hand (Gabor channels), and (ρ̃l)l∈{0..63}\G
on the other hand, are shown in Figure 5.4, for AlexNet and ResNet after training with
ImageNet-1K. The window size κ has been set to its highest admissible value, i.e., π/m.

Gabor channels exhibit a substantial percentage of energy outside the window of in-
terest, particularly in the case of AlexNet. Such behavior can make the networks more
unstable, since the conditions of Section 4.5 are no longer satisfied. This observation
can be attributed to the kernel size imposed by the network’s design, which mechanically
sets a limit on the Fourier resolution. In Figure 5.2, we can indeed notice that some
Gabor-like filters seem truncated, providing a visual evidence for the previous statement.
However, increasing the kernel size would make the networks harder to train, with possible
downsides on their prediction accuracy. Nevertheless, consistent with Hypothesis 4.5, the
Fourier resolution of the Gabor-like kernels is higher in AlexNet, compared to ResNet, as
the subsampling factor m is also twice larger. This is visually evidenced in Figure 5.2.

In Section 5.4.2, we shall construct a mathematical twin of standard CNNs, where
Hypothesis 4.4 (monochrome filters) and Hypothesis 4.5 (Gabor-like filters with maximum
bandwidth) are enforced for a predefined number of output channels.
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5.4 Design of the CMod-based Antialiased Models
In this section, we describe the general principles of our antialiasing approach based on
complex convolutions. We then provide some details about the mathematical twin based
on DT-CWPT, and explain how our method has been benchmarked against blur-pooling-
based antialiased models.

5.4.1 Antialiasing Principle

In this section, we focus on the Gabor channels G ⊂ {0 . . L− 1}, as described in Sec-
tion 5.3.1. The main idea is to substitute, for any l ∈ G, RMax by CMod, as explained
hereafter. Following (5.2), expression (5.7) can be rewritten

Amax
l = ReLU

(
Ymax

l + bl

)
, (5.20)

where Ymax
l is the output of an RMax operator as introduced in (5.4). More formally,

Ymax
l := MaxPool

(
K−1∑
k=0

(Xk ⋆Vlk) ↓ m
)
. (5.21)

Then, following (5.3), the RMax-CMod substitution yields

Amod
l = ReLU

(
Ymod

l + bl

)
, (5.22)

where Ymod
l is the output of a CMod operator (5.5), satisfying

Ymod
l :=

∣∣∣∣∣
K−1∑
k=0

(Xk ⋆Wlk) ↓ (2m)
∣∣∣∣∣ , (5.23)

where the complex-valued filter Wlk ∈ l2C(Z2) has been introduced in (5.12). Then, assum-
ing Hypotheses 4.4 and 4.5 for any l ∈ G, the stability results of Section 4.5 are applicable
to the Gabor channels. In particular, for any input channel k ∈ {0 . .K − 1}, the energy of
Wlk is concentrated in a small window in the Fourier domain, similar to Figure 5.1d. Due
to this property, the modulus operator provides a smooth envelope for complex-valued
cross-correlations with Wlk (Kingsbury and Magarey, 1998). This leads to the output
Ymod

l (5.23) being nearly invariant to translations. Furthermore, Ymax
l ≈ Ymod

l (except
for a set of pathological frequencies regularly scattered across the Fourier domain), thus
establishing the CMod operator as a stable alternative to RMax.

As covered in Section 5.3.1, the Fourier resolution of the Gabor-like filters does not
quite match the requirements needed to consider Hypothesis 4.5 as a reasonable approx-
imation, especially for AlexNet. This is partly due to the limited size of the convolution
kernels, which leads to truncated filters. However, in the next section, we present a
mathematical twin of standard, freely-trained architectures, in which both hypotheses are
enforced.

5.4.2 Wavelet-Based Twin Models (WCNNs)

As explained in Section 5.4.1, our antialiasing method restricts to the Gabor channels
l ∈ G ⊂ {0 . . L− 1}. However, G is unknown a priori: for a given output channel
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l ∈ {0 . . L− 1}, whether Vlk will become band-pass and oriented after training is un-
predictable. Thus, we need a way to automatically separate the set G of Gabor channels
from the set of remaining channels, denoted by F := {0 . . L− 1}\G. To this end, we built
“mathematical twins” of standard CNNs, based on the dual-tree wavelet packet transform
(DT-CWPT), such as described in Section 3.3. These models, which we call WCNNs in
short, are intended to reproduce the behavior of freely-trained architectures with a higher
degree of control and fewer trainable parameters. In this section, we present their general
structure; a more detailed description is provided in Section 5.A.1. For the purpose of
readability, we assume that K = 3 (RGB input images).

We denote by Lgab := card(G) and Lfree := card(F) the number of Gabor and re-
maining channels, respectively. They are determined empirically from the trained CNNs,
following the procedure described in Section 5.3.1—see Table 5.1 for a summary of the
experiment details. In a twin WCNN architecture, the two groups of output channels
are organized such that F = {0 . . Lfree − 1} and G = {(Lfree + 1) . . L}. The first Lfree
channels, which are outside the scope of our antialiasing approach, remain freely-trained
as in the standard architecture. Regarding the Lgab remaining (Gabor) channels, the
convolution kernels Vlk are constrained to satisfy Hypotheses 4.4 and 4.5, as explained
below.

Monochrome Filters. In WCNNs, Hypothesis 4.4 (monochrome filters) is enforced
with a trainable 1 × 1 convolution layer (M. Lin et al., 2014), parameterized by µ, com-
puting the following luminance image:

Xlum :=
2∑

k=0
µkXk. (5.24)

Gabor-Like Kernels. To guarantee that Hypothesis 4.5 is met (Gabor-like kernels with
bandwidth no larger than π/m), we implemented DT-CWPT, which is achieved through
a series of subsampled convolutions. The number of decomposition stages J ∈ N\{0} was
chosen such that

m = 2J−1, (5.25)

where, as a reminder, m denotes the subsampling factor as introduced in (5.6). As
proven in Proposition 4.8, DT-CWPT generates a set of filters

(
W↗(J)

k′ , W↘(J)
k′ , W↙(J)

k′ ,

W↖(J)
k′

)
k′∈{0..4J −1}, which tiles the Fourier domain [−π, π]2 into 4×4J overlapping square

windows of size π/m. Their real and imaginary parts approximately form a 2D Hilbert
transform pair such as defined in (5.11). For the sake of convenience, this family of filters
is re-indexed and renamed

(
Wdt

k′
)

k′∈{0..4×4J −1}.
The WCNN architecture is designed such that, for any Gabor channel l ∈ G,

Ṽl = Re
(
W̃l

)
, (5.26)

where W̃l ∈ l2C(Z2) is selected among the 4× 4J DT-CWPT filters:

∃k′ ∈
{
0 . . 4× 4J − 1

}
: W̃l := Wdt

k′ . (5.27)
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The output Yl introduced in (5.6) then becomes

Yl =
(
Xlum ⋆ Ṽl

)
↓ 2J−1. (5.28)

To summarize, rather than the freely-trained convolution (5.6), a WCNN employs a
combination of (5.24) and (5.28) as a substitute, for any Gabor output channel l ∈ G. This
combination is wrapped into a wavelet block, also referred to as WBlock in short. Technical
details about its exact design are provided in Section 5.A.1. The resulting convolution
kernel then satisfies Vlk = µkṼl, where Ṽl has been introduced in (5.26).

Schematic representations of the WCNN architecture based on AlexNet (m = 4, J = 3)
and ResNet (m = 2, J = 2) are provided in Figures 5.5b and 5.6b, respectively (top).

5.4.3 Antialiased WCNNs with CMod

Using the antialiasing principles presented in Section 5.4.1, we replace RMax (5.21) by
CMod (5.23) for all Gabor channels l ∈ G. In the corresponding model, referred to as
CWCNN, the wavelet block is replaced by a complex wavelet block (CWBlock), in which
(5.28) becomes

Zl =
(
Xlum ⋆ W̃l

)
↓ 2J , (5.29)

where W̃l ∈ l2C(Z2) has been introduced in (5.27). Then, a modulus is applied to Zl, which
yields Ymod

l such as defined in (5.23), with Wlk := µkW̃l for any RGB channel k ∈ {0 . . 2}.
Finally, we apply a bias and ReLU to Ymod

l , following (5.22).
A schematic representation CWAlexNet is provided in Figure 5.5c (top).

Remark 5.2. In contrast with (5.12), the 2D Hilbert transform does not need to be
explicitly computed to get the complex-valued kernel Wlk, since it is directly provided by
DT-CWPT. Nonetheless, by design, Re(Wlk) and Im(Wlk) approximately form a Hilbert
transform pair.

Remark 5.3. Unlike freely-trained models, the size of the convolution kernels is not
limited, thus allowing Hypothesis 4.5 to be more accurately satisfied, to the extent allowed
by DT-CWPT. Similar to Figure 5.4, the statistical distribution of (ρ̃l)k∈G on the one hand
(Gabor channels), and (ρ̃l)l∈F on the other hand, are shown in Figure 5.14.

Remark 5.4. The constraint (5.24) could be relaxed by authorizing a specific luminance
vector µl for each Gabor channel l ∈ G, while still satisfying Hypotheses 4.4 and 4.5.
Numerical experiments on this matter are left outside the scope of this thesis, but the
corresponding (untrained) models are available in the Python package released on GitHub.

5.4.4 WCNNs with Blur Pooling

We benchmark our approach against the antialiasing methods proposed by R. Zhang
(2019) and X. Zou et al. (2023). To this end, we first consider a WCNN antialiased with
static or adaptive blur pooling, respectively referred to as BlurWCNN and ABlurWCNN.
A schematic representation of BlurWAlexNet is provided in Figure 5.5b (bottom). Then,
we substitute the blurpooled Gabor channels (right branch of the diagram) with our
own CMod-based approach. The corresponding models are respectively referred to as
CBlurWCNN and CABlurWCNN. Again, a schematic representation of CBlurWAlexNet
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WAlexNet WResNet
m (subsampling factor) 4 2
J (decomposition depth) 3 2

Lfree, Lgab (output channels) 32, 32 40, 24

Table 5.1. Experimental settings for our WCNN twin models. Other details are provided in
Section 5.A.3.

can be found in Figure 5.5c (bottom). Note that, for a fair comparison, all models use
blur pooling in the freely-trained channels as well as deeper layers. Therefore, several
antialiasing methods are employed in different parts of the network.

5.4.5 Adaptation to ResNet: Batch Normalization

In many architectures including ResNet, the bias is computed after an operation called
batch normalization (BN) (Ioffe and Szegedy, 2015). In this context, (5.1) becomes

Conv→ Sub→ BN→ Bias→ ReLU→ MaxPool. (5.30)

As detailed in Section 5.A.2, the RMax-CMod substitution yields, analogously to (5.3),

CConv→Sub→Modulus→BN0→Bias→ReLU, (5.31)

where BN0 refers to a special type of batch normalization without mean centering. A
schematic representation of CWResNet models is provided in Figure 5.6c (top).

5.5 Experiments

5.5.1 Experiment Details

ImageNet. We built our WCNN and CWCNN mathematical twins based on AlexNet
(Krizhevsky et al., 2017) and ResNet-34 (He et al., 2016). Their overall design is de-
scribed in Section 5.4, along with setting details in Table 5.1. The values of Lfree and
Lgab were determined empirically from the freely-trained AlexNet and ResNet-34, follow-
ing the procedure described in Section 5.3.1. More precisely, we respectively found 31
and 23 Gabor channels in AlexNet and ResNet, that we rounded to 32 and 24 to ease
implementation. Zhang’s static blur pooling approach (2019) is tested on both AlexNet
and ResNet, whereas Zou et al.’s adaptive approach (2023) is only tested on ResNet. The
latter was indeed not implemented on AlexNet in the original paper, and we could not
make it work on this architecture.

As mentioned above, we compare blur-pooling-based antialiasing approach (Figure 5.5b,
bottom) with ours (Figure 5.5c, bottom). To apply static or adaptive blur pooling to the
WCNNs, we proceed as follows. Following Zhang’s implementation, the wavelet block is
not antialiased if m = 2 as in ResNet, for computational reasons. However, when m = 4 as
in AlexNet, a blur pooling layer is placed after ReLU, and the wavelet block’s subsampling
factor is divided by 2. Moreover, max pooling is replaced by max-blur pooling. The size of
the blurring filters is set to 3, as recommended by R. Zhang (2019). Besides, DT-CWPT
decompositions are performed with Q-shift orthogonal filters of length 10 as introduced
by Kingsbury (2003).
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(a) AlexNet (b) WAlexNet (baseline) (c) CWAlexNet

Figure 5.5. First layers of AlexNet and its variants, corresponding to a convolution layer followed
by ReLU and max pooling (5.1). The models are framed according to the same colors and line styles
as in Figures 5.9a and 5.10a. The green modules are the ones containing trainable parameters;
the orange and purple modules represent static linear and nonlinear operators, respectively. The
numbers between each module represent the depth (number of channels), height and width of
each output. Figure 5.5a: freely-trained models. Top: standard AlexNet. Bottom: Zhang’s
“blurpooled” AlexNet. Figure 5.5b: mathematical twins (WAlexNet) reproducing the behavior of
standard (top) and blurpooled (bottom) AlexNet. The left side of each diagram corresponds to the
Lfree := 32 freely-trained output channels, whereas the right side displays the Lgab := 32 remaining
channels, where freely-trained convolutions have been replaced by a wavelet block (WBlock) as
described in Section 5.4.2. Figure 5.5c: CMod-based antialiased WAlexNet, where WBlock has
been replaced by CWBlock, and max pooling by a modulus. The bias and ReLU are placed after
the modulus, following (5.3). In the bottom models, we compare Zhang’s antialiasing approach
(Figure 5.5b) with ours (Figure 5.5c) in the Gabor channels.
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(a) ResNet (b) WResNet (baseline) (c) CWResNet

Figure 5.6. First layers of ResNet and its variants, corresponding to a convolution layer followed
by ReLU and max pooling. The models are framed according to the same colors and line styles as
in Figures 5.9b and 5.10b. The bias module from Figure 5.5 has been replaced by an affine batch
normalization layer (“BN + Bias”, or “BN0 + Bias” when placed after Modulus—see Section 5.4.5).
Top: ResNet without blur pooling. Middle: Zhang’s approach, using static blur pooling. Bottom:
Zou et al.’s approach, using adaptive blur pooling.
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As for standard AlexNet and ResNet, our models were trained on the ImageNet-1K
dataset, following the standard procedure provided by PyTorch. Moreover, we set aside
100K images from the training set—100 per class—in order to compute the top-1 error
rate after each training epoch (“validation set”).

CIFAR-10. We also trained ResNet-18, ResNet-34 and their variants on the CIFAR-10
dataset. Training was performed on 300 epochs, with an initial learning rate equal to
0.1, decreased by a factor of 10 every 100 epochs. As for ImageNet, we set aside 5 000
images out of 50K to compute accuracy during the training phase. Given the images of
small size in this dataset (32× 32 pixels), feature extraction can be performed efficiently
with a reduced number of layers. For this reason, the first layers (5.1) arguably have a
higher influence on the overall predictive power. We therefore expect to clearly highlight
the benefits of our approach on this specific task.

5.5.2 Evaluation Metrics

Classification Accuracy. Classification accuracy was computed on the standard Im-
ageNet evaluation set (50K images). We followed the ten-crops procedure (Krizhevsky
et al., 2017): predictions are made over 10 patches extracted from each input image, and
the softmax outputs are averaged to get the overall prediction. We also considered cen-
ter crops of size 224 for one-crop evaluation. In both cases, we used top-1-5 error rates.
For CIFAR-10 evaluation (10K images), we measured the top-1 error rate with one- and
ten-crops.

Measuring Shift Invariance. For each image in the ImageNet evaluation set, we ex-
tracted several patches of size 224, each of which being shifted by 0.5 pixel along a given
axis. We then compared their outputs in order to measure the model’s robustness to
shifts. This was done by computing the Kullback-Leibler (KL) divergence between output
vectors—which, under certain hypotheses, can be interpreted as probability distributions
(Bishop and Mitchell, 2014, pp. 205-206). This metric is intended for visual representation.

In addition, we measured the mean flip rate (mFR) between predictions (Hendrycks
and Dietterich, 2019), as done by R. Zhang (2019) in its blurpooled models. For each
direction (vertical, horizontal and diagonal), we measured the mean frequency upon which
two shifted input images yield different top-1 predictions, for shift distances varying from 1
to 8 pixels. We then normalized the results with respect to AlexNet’s mFR, and averaged
over the three directions. This metric is also referred to as consistency.

We repeated the procedure for the models trained on CIFAR-10. This time, we ex-
tracted patches of size 32 × 32 from the evaluation set, and computed mFR for shifts
varying from 1 to 4 pixels. Besides, normalization was performed with respect to ResNet-
18’s mFR.

5.6 Results and Discussion

5.6.1 Kernel Visualization and Characteristic Frequencies

Figure 5.7 displays the kernels V ∈ l2R(Z2)L×K , with K = 3 and L = 64, for WAlexNet
and WResNet. The kernels are shown as RGB color images, after training with ImageNet,
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(a) WAlexNet (32 Gabor channels)

(b) WResNet (24 Gabor channels)

Figure 5.7. Convolution kernels in the first layer of WAlexNet (a) and WResNet-34 (b), after
training with ImageNet-1K. For each output channel l ∈ {0 . . 63}, the corresponding convolution
kernel (Vlk)k∈{0..2} is displayed as an RGB image in the spatial domain (left), and its associated
magnitude spectrum in the Fourier domain (right). The convolution kernels associated to the
Gabor channels are displayed on the 4 and 3 last rows for WAlexNet and WResNet, respectively.
For the sake of visual rendering, they have been respectively cropped to (11 × 11) and (7 × 7) to
match the size of the freely-trained kernels.

for both freely-trained and Gabor channels. This figure is to be compared with Figure 5.2
for the freely-trained models. Furthermore, the characteristic frequencies (θl)l∈G , such as
defined in (5.19), are plotted in Figure 5.8, together with the characteristic frequencies of
the freely-trained models.

From Figure 5.7, we observe that the Fourier resolution of Vlk increases with the
subsampling factor m. This property is consistent with what is observed in freely-trained
CNNs, as shown in Figure 5.2: in AlexNet, where m = 4, the Gabor-like filters are
more localized in frequency (and less spatially localized) than in ResNet, where m = 2.
Furthermore, we notice that, up to a few exceptions, the freely-trained channels (4 and 5
first rows for AlexNet and ResNet, respectively) have been specialized to lower-frequency
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(a) AlexNet (b) ResNet-34

Figure 5.8. Two-dimensional characteristic frequencies θl ∈ [−π, π]2 (5.19), for any Gabor channel
l ∈ G. For the sake of clarity, the plots have been symmetrized with respect to the origin.

filters (mono- or bi-color blobs). Finally, from Figure 5.8, we observe that the point
clouds representing the characteristic frequencies of CNN and WCNN architectures are
similarly distributed across the Fourier domain. However, unlike CNNs, the bandwidth in
WCNNs is generally well-contained within a square window of size κ× κ, with κ := π/m
(Hypothesis 4.5). This property is evidenced in Figure 5.14, in contrast with Figure 5.4
for the freely-trained models.

5.6.2 Validation and Test Accuracy

Top-1 accuracy of AlexNet- and ResNet-based models along training with ImageNet are
plotted in Figure 5.9. In addition, error rates, computed on the evaluation sets, are
provided in Table 5.2 for ImageNet and Table 5.3 for CIFAR-10.

Our CMod-based approach significantly outperforms the baselines for AlexNet: CWCNN
vs WCNN (blue diamonds), and CBlurWCNN vs BlurWCNN (red stars). Remarkably,
the exclusive application of CMod-based antialiasing to the Gabor channels (CWCNN,
solid blue line) is sufficient to match the performance of blur-pooling-based antialiasing
(BlurWCNN, dashed red line), which, in contrast, is implemented throughout the en-
tire network. On the other hand, the ResNet validation curves (Figure 5.9b) indicate
an improvement of CWCNN over WCNN (blue diamonds, solid versus dashed lines), but
marginal to no gains of CBlurWCNN over BlurWCNN (red stars), or CABlurWCNN
versus ABlurWCNN (green squares), when trained on ImageNet. Yet, notable gains are
observed on the evaluation set for CBlurWCNN versus BlurWCNN, as reported in Ta-
ble 5.2. This indicates a better generalization capability of our approach, compared to
the static blur pooling-based method. In particular, simply replacing the blurpooled
Gabor channels in the first layer with our CMod-based approach (BlurWCNN versus
CBlurWCNN) produces improvements on a similar order of magnitude as adaptive blur
pooling, which is applied throughout the whole network (ABlurWCNN). However, adap-
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Model One-crop Ten-crops Shifts
top-1 top-5 top-1 top-5 mFR

AlexNet
CNN 45.3 22.2 41.3 19.3 100.0

WCNN 44.9 21.8 40.8 19.0 101.4
CWCNN∗ 44.3 21.3 40.2 18.5 88.0

BlurCNN † 44.4 21.6 40.7 18.7 63.8
BlurWCNN† 44.3 21.4 40.5 18.5 63.1

CBlurWCNN†∗ 43.3 20.5 39.6 17.9 69.4
ResNet-34

CNN 27.6 9.2 24.8 7.7 78.1
WCNN 27.4 9.2 24.7 7.6 77.2

CWCNN∗ 27.2 9.0 24.4 7.4 73.1
BlurCNN † 26.7 8.6 24.0 7.2 61.2

BlurWCNN† 26.7 8.6 24.1 7.3 65.2
CBlurWCNN†∗ 26.5 8.4 23.7 7.0 62.5

ABlurCNN ‡ 26.1 8.3 23.5 7.0 60.8
ABlurWCNN‡ 26.0 8.2 23.6 6.9 62.1

CABlurWCNN‡∗ 26.1 8.2 23.7 7.0 63.1

Table 5.2. Evaluation metrics on ImageNet (%): the lower the better. Models: †static and
‡adaptive blur pooling; ∗CMod-based antialiasing (our approach).

Model ResNet-18 ResNet-34
1crp 10crp shft 1crp 10crps shft

CNN 14.9 10.8 100.0 15.2 10.9 100.3
WCNN 14.2 10.3 92.4 14.5 10.5 99.2

CWCNN∗ 13.8 9.6 88.8 12.9 9.2 93.0
BlurCNN † 14.2 10.4 87.7 15.7 11.6 88.2

BlurWCNN† 13.1 9.7 84.6 13.2 9.9 85.6
CBlurWCNN†∗ 12.3 8.9 85.7 12.4 9.1 83.7

ABlurCNN ‡ 14.6 11.0 90.9 16.3 12.8 91.9
ABlurWCNN‡ 14.5 11.0 86.5 14.0 10.4 93.3

CABlurWCNN‡∗ 12.8 9.7 81.7 12.8 9.2 86.6

Table 5.3. Evaluation metrics on CIFAR-10 (%): top-1 error rate using one- and ten-crops methods
(“1crp” and “10crp”); and mFR measuring consistency (“shft”). Models: †static and ‡adaptive
blur pooling; ∗CMod-based antialiasing (our approach).

Model One-crop Ten-crops Shifts
top-1 top-5 top-1 top-5 mFR

WCNN 27.4 9.2 24.7 7.6 77.2
BlurWCNN† 26.7 8.6 24.1 7.3 65.2

CBlurWCNN†∗ 26.5 8.4 23.7 7.0 62.5
→ BlurWCNN†♢ 26.8 8.6 24.3 7.1 69.7

ABlurWCNN‡ 26.0 8.2 23.6 6.9 62.1
CABlurWCNN‡∗ 26.1 8.2 23.7 7.0 63.1

→ ABlurWCNN†♢ 26.4 8.4 23.9 7.0 70.3

Table 5.4. Ablation study on WResNet-34, described in Section 5.6.6. Evaluation metrics on
ImageNet (%): the lower the better. Models: †static and ‡adaptive blur pooling; ∗CMod-based
antialiasing on the Gabor channels (our approach); ♢ablated model: no antialiasing on the Gabor
channels (neither blur pooling nor CMod).
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(a) AlexNet (b) ResNet-34

Figure 5.9. Evolution of the top-1 validation error (one-crop) along training with ImageNet. The
freely-trained models, upon which the mathematical twins are built, appear in faint gray. Legend:
†static and ‡adaptive blur pooling; ∗CMod-based antialiasing (our approach).

(a) AlexNet (b) ResNet-34

Figure 5.10. AlexNet-based models: mean KL divergence between the outputs of a reference image
versus shifted images (the smaller the better). Legend: †static and ‡adaptive blur pooling; ∗CMod-
based antialiasing (our approach).

tive blur pooling (ABlurWCNN), yields similar or marginally higher accuracy than our
approach (CABlurWCNN). Nevertheless, our method is computationally more efficient,
requires less memory (see Section 5.6.5 for more details), and do not demand additional
training, unlike adaptive blur pooling. To better support this claim, we conducted abla-
tion studies which we present in Section 5.6.6. Finally, when trained on CIFAR-10 (see
Table 5.3), our CMod-based antialiased models built upon ResNet-18 and 34 achieve sig-
nificant gains in accuracy over non-antialiased models, as well as models antialiased with
both blur-pooling-based methods.

Arguably, the higher gains obtained for AlexNet, compared to ResNet, are attributed
to the higher impact of the initial layers on the network’s predictive power. This is
partly due to the larger subsampling factor performing dimensionality reduction of higher
order, which may capture more complex dependencies in the structure of the input data.
Additionally, ResNet models are deeper than AlexNet, and much of their performance is
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derived from non-geometric features captured by the deeper layers (Oyallon et al., 2017).
As a result, our antialiasing approach may have a comparatively smaller impact on the
network’s overall accuracy. Concerning CIFAR classification, the first layers have a high
impact on the network’s predictive power, due to the small size of input images. Therefore,
our antialiasing method have a higher impact on accuracy, comparatively to ImageNet.

As a side note, the training curves for WCNNs (colored dashed lines) closely follow
those of standard CNNs (gray dotted lines). This is an expected result, since the former
models are designed to mimic the behavior of the latter.

5.6.3 Shift Invariance (KL Divergence)

The mean KL divergence between outputs of shifted images are plotted in Figure 5.10 for
AlexNet and ResNet-34 trained on ImageNet. Moreover, the mean flip rate for shifted
inputs (consistency) is reported in Table 5.2 for ImageNet (AlexNet and ResNet-34) and
Table 5.3 for CIFAR-10 (ResNet-18 and 34).

In both AlexNet and WAlexNet (Figure 5.10a, gray and blue diamonds, dashed lines),
the initial convolution layer’s output undergoes a one-pixel shift for every four-pixel shift
in the input image. Consequently, any divergence between the output vectors is due to
the instability of subsequent layers to one-pixel shifts. In contrast, instabilities which are
accountable to the initial layer are observed for shifts that are not multiples of 4. Likewise,
for input shifts of eight pixels, the max pooling’s output is shifted by exactly one pixel,
resulting in even higher stability. In CWAlexNet (blue diamonds, solid line), the same
eight-to-one-pixel ratio occurs to the modulus layer’s output, which explains why the two
curves meet for 8-pixel shifts. However, the RMax-CMod substitution has greatly reduced
first-layer instabilities, resulting in a flattened curve and avoiding the “bumps” observed
for non-antialiased models. Similar observations can be drawn for ResNet (Figure 5.10b),
with the caveat that input images must only be shifted by 2 and 4 pixels for a one-pixel
shift at the output of the convolution and max pooling layers, respectively.

On the other hand, BlurAlexNet and BlurWAlexNet (Figure 5.10a, gray and red stars,
dashed lines) exhibit considerably flattened curves, compared to non-antialiased mod-
els and CWAlexNet. This demonstrates the effectiveness of Zhang’s blur-pooling-based
method in enhancing shift invariance. Applying CMod-based antialiasing instead of blur
pooling on the Gabor channels (CBlurWAlexNet, red stars, solid line) actually degrades
shift invariance (except for shifts smaller than 1.5 pixels), as evidenced by the bell-shaped
curve. Nevertheless, the corresponding classifier is significantly more accurate. This is not
surprising, as our approach prioritizes the conservation of high-frequency details, which
are important for classification. An extreme reduction of shift variance using a large blur
pooling filter would indeed result in a significant loss of accuracy. Therefore, our work
achieves a better balance between shift invariance and information preservation. Experi-
mental details on this matter are provided in Section 5.6.4. However, we may notice that,
applied to the ResNet architecture (Figure 5.10b), CBlurWCNN (red stars, solid line) is
generally more stable than BlurWCNN (dashed lines). The same observation car be drawn
for the models based on adaptive blur pooling (green squares, solid vs dashed lines).
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(a) AlexNet

(b) ResNet-34

Figure 5.11. Classification accuracy (ten-crops) vs consistency, measuring the stability of predic-
tions to small input shifts, for (a) AlexNet- and (b) ResNet-based models (the lower the better for
both axes). Left: validation set (100K images set aside from the training set). Right: evaluation
set (50K images provided as a separate dataset). For each of the three architectures, we increased
the blurring filter size from 1 (i.e., no blur pooling) to 7. The blue diamonds (no blur pooling) and
red stars (blur pooling with filters of size 3) correspond to the models from Figures 5.9 and 5.10.
At equivalent consistency levels, our CMod-based approach (solid line) yields higher accuracy.

5.6.4 Accuracy vs Consistency

To gain further insights into the tradeoff between shift invariance and information preser-
vation, we conducted experiments by varying the size of the blurring filters in AlexNet-
and ResNet-based models. Figure 5.11 shows the relationship between consistency and
prediction accuracy on ImageNet, for different filter sizes ranging from 1 (no blur pooling)
to 7 (heavy loss of high-frequency information).3 We found that a near-optimal tradeoff
is achieved when the filter size is set to 2 or 3. Furthermore, at equivalent consistency
levels, CBlurWCNN outperforms BlurWCNN in terms of accuracy. Note however that
the optimal version of CBlurWCNN is not necessarily more consistent than the optimal
version of BlurWCNN, despite achieving higher accuracy.

5.6.5 Computational Resources

Table 5.5 compares the computational resources and memory footprint required for each
antialiasing method. To achieve this, we considered models with freely-trained convolu-

3Similar plots can be found in Zhang’s paper (2019).
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Method Computational cost Memory footprint
AlexNet ResNet AlexNet ResNet

No antialiasing (ref) 1 .0 1 .0 1 .0 1 .0
BlurPool (R. Zhang, 2019) 4.0 1.0 4.7 1.9

ABlurPool (X. Zou et al., 2023) – 2.1 – 2.0
CMod (ours) 0.5 0.5 0.6 0.4

Table 5.5. Computational cost and memory footprint required for each antialiasing method, per
Gabor channel. The values are normalized relative to non-antialiased AlexNet or ResNet. Com-
putational cost: FLOPs for computing Ymax

l (5.21) or Ymod
l (5.23). Memory footprint: size of

the intermediate and output tensors saved by PyTorch for the backward pass. It should be noted
that the amount of computing resources required by the blur pooling layers in other areas of the
network has not been considered in this analysis.

tions, because the goal was to evaluate the computational performances of the various
antialiasing approaches, excluding implementation tricks based on DT-CWPT from the
scope of analysis. More details are provided in Sections 5.B and 5.C.

5.6.6 Ablation Study

In Section 5.6.2, we demonstrated that our models outperform the baselines, except in
cases where adaptive blur pooling is used as an antialiasing method. Applying our CMod-
based approach on the Gabor channels slightly degrades accuracy compared to adaptive
blur pooling, but it requires fewer computational resources and memory, as shown in Sec-
tion 5.6.5. Following this idea, we want to determine whether antialiasing in the Gabor
channels was necessary in the first place, given the fact that blur pooling is implemented
throughout the entire network. To this end, we conducted an ablation study where an-
tialiasing is removed from the Gabor channels, whereas static or adaptive blur pooling
remain used in the rest of the network.

We found that, compared to blur-pooling- or CMod-based methods, removing an-
tialiasing from the Gabor channels generally leads to decreased accuracy and consistency,
as shown in Table 5.4. However, in the case of ABlurWResNet (adaptive blur pooling),
this drop in performance is marginal, suggesting that antialiasing in this part of the net-
work may not be essential. However, this approach requires using multiple adaptive blur
pooling layers throughout the entire network, at the cost of additional computational re-
sources, memory, and trainable parameters. Thus, although it yields the most significant
gains in performance, adaptive blur-pooling-based models may not be the most suitable
options in scenarios where computational resources are limited.

5.7 Concluding Remarks

The mathematical twins introduced in this chapter serve a proof of concept for our CMod-
based antialiasing approach. However, its range of application extends well beyond DT-
CWPT filters. While we focused on the first convolution layer, it is important to note that
such initial layers play a critical role in CNNs by extracting low-level geometric features
such as edges, corners or textures. Therefore, a specific attention is required for their
design. In contrast, deeper layers are more focused on capturing high-level structures that
conventional image processing tools are poorly suited for, as pointed out by Oyallon et al.
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(2017) in the context of hybrid scattering networks.
Furthermore, while our approach is tailored for CNN architectures, which were chosen

to make a fair comparison to related methods, it has potential for broader applicability. In
particular, as covered in Section 6.2.4, it could be used to produce stable token embeddings
for vision transformers. In conclusion, designing deep learning architectures to be invariant
to certain groups of transformations can eliminate the need to learn such invariance from
vast amounts of data. These architectures are therefore particularly suitable in situations
where available data is scarce.

5.A Appendix: Technical Complements

5.A.1 Design of WCNNs

In this section, we provide complements to the description of the mathematical twin
(WCNN) introduced in Section 5.4.2. Expressions (5.26) and (5.27) imply that, for each
Gabor channel l ∈ G, the average kernel Ṽl is the real part of a DT-CWPT filter:

∃k′ ∈
{
0 . . 4× 4J − 1

}
: Ṽl = Re

(
Wdt

k′
)
, (5.32)

where J ∈ N \ {0} denotes the decomposition depth, and Wdt
k′ is one of the 4 × 4J filters

spawned by DT-CWPT. We now explain how the filter selection is done; in other words,
how k′ is chosen among

{
0 . . 4 × 4J − 1

}
. Since input images are real-valued, we restrict

to the filters with bandwidth located in the half-plane of positive x-values. For the sake
of concision, we denote by Kdt := 2× 4J the number of such filters.

For any RGB image X ∈ l2R(Z2)3, a luminance image Xlum ∈ l2R(Z2) is computed
following (5.24), using a 1× 1 convolution layer. Then, DT-CWPT is performed on Xlum.
We denote by D := (Dk)k∈{0..Kdt−1} the tensor containing the real part of the DT-CWPT
feature maps:

Dk =
(
Xlum ⋆ Re W(J)

k

)
↓ 2J−1. (5.33)

For the sake of computational efficiency, DT-CWPT is performed with a succession of
subsampled separable convolutions and linear combinations of real-valued wavelet packet
feature maps (I. W. Selesnick et al., 2005). To match the subsampling factor m :=
2J−1 (5.25) of the standard model, the last decomposition stage is performed without
subsampling.

Filter Selection. The number of dual-tree feature maps Kdt may be greater than the
number of Gabor channels Lgab. In that case, we therefore want to select filters that
contribute the most to the network’s predictive power. First, the low-frequency feature
maps D0 and D(4J +1) are discarded. Then, a subset of K ′

dt < Kdt feature maps is manually
selected and permuted in order to form clusters in the Fourier domain. Considering a
(truncated) permutation matrix Σ ∈ RK′

dt×Kdt , the output of this transformation, denoted
by D′ ∈ l2C(Z2)K′

dt , is defined by:
D′ := Σ D. (5.34)

The feature maps D′ are then sliced into Q groups of channels D(q) ∈ l2C(Z2)Kq , each
of them corresponding to a cluster of band-pass dual-tree filters with neighboring fre-
quencies and orientations. On the other hand, the output of the wavelet block, Ygab :=
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(a) WBlock ↓ 4 (b) CWBlock ↓ 8

Figure 5.12. Detail of a wavelet block with J = 3 as in AlexNet, in its RMax (a) and CMod (b)
versions. DT-RWPT corresponds to the real part of DT-CWPT.

(Yl)l∈{Lfree+1..L} ∈ l2R(Z2)Lgab , where Yl has been introduced in (5.6), is also sliced into
Q groups of channels Y(q) ∈ l2R(Z2)Lq . Then, for each group q ∈ {0 . . Q− 1}, an affine
mapping between D(q) and Y(q) is performed. It is characterized by a trainable matrix
A(q) :=

(
α

(q)
1 , · · · , α

(q)
Lq

)⊤ ∈ RLq×Kq such that, for any l ∈ {0 . . Lq − 1},

Y(q)
l := α

(q)⊤
l ·D(q). (5.35)

As in the color mixing stage, this operation is implemented as a 1× 1 convolution layer.
A schematic representation of the real- and complex-valued wavelet blocks can be found

in Figure 5.12.

Sparse Regularization. For any group q ∈ {0 . . Q− 1} and output channel l ∈ {0 . . Lq − 1}
in the q-th group, we want the model to select one and only one wavelet packet feature
map within the q-th group. In other words, each row vector α

(q)
l :=

(
α

(q)
l, 1, · · · , α

(q)
l, Kq

)⊤ of
A(q) contains no more than one nonzero element, such that (5.35) becomes

Y(q)
l = α

(q)
lk X(q)

k (5.36)

for some (unknown) value of k ∈ {0 . .Kq − 1}. To enforce this property during training,
we add a mixed-norm l1/l∞-regularizer (J. Liu and J. Ye, 2010) to the loss function to
penalize non-sparse feature map mixing as follows:

L := L0 +
Q−1∑
q=0

λq

Lq−1∑
l=0

 ∥∥α(q)
l

∥∥
1∥∥α(q)

l

∥∥
∞

− 1

 , (5.37)

where L0 denotes the standard cross-entropy loss and λ ∈ RQ denotes a vector of regu-
larization hyperparameters. Note that the unit bias in (5.37) serves for interpretability of
the regularized loss (L = L0 in the desired configuration) but has no impact on training.

5.A.2 Batch Normalization in ResNet

This is a complement to Section 5.4.5. In many recent architectures including ResNet,
the bias (see Figure 5.6) is replaced by an affine batch normalization layer (BN). In this
section, we show how to adapt our approach to this context.
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A BN layer is parameterized by trainable weight and bias vectors, respectively denoted
by a and b ∈ RL. In the remaining of the section, we consider input images X as a stack
of discrete stochastic processes. Then, (5.7) is replaced by

Al :=MaxPool
{

ReLU
(
al ·

Yl−Em[Yl]√
Vm[Yl]+ε

+bl

)}
, (5.38)

with Yl satisfying (5.6) (output of the first convolution layer). In the above expression,
we have introduced Em(Yl) ∈ R and Vm(Yl) ∈ R+, which respectively denote the mean
expected value and variance of Yl[n], for indices n contained in the support of Yl, denoted
by supp(Yl). Let us denote by N ∈ N \ {0} the support size of input images. Therefore, if
the filter’s support size Nf is much smaller that N , then supp(Yl) is roughly of size N/m.
We thus define the above quantities as follows:

Em[Yl] := m2

N2

∑
n∈Z2

E[Yl[n]]; (5.39)

Vm[Yl] := m2

N2

∑
n∈Z2

V[Yl[n]]. (5.40)

In practice, estimators are computed over a minibatch of images, hence the layer’s de-
nomination. Besides, ε > 0 is a small constant added to the denominator for numerical
stability. For the sake of concision, we now assume that al = 1. Extensions to other
multiplicative factors is straightforward.

Let l ∈ G denote a Gabor channel. Then, recall that Yl satisfies (5.28) (output of the
WBlock), with

Ṽl := Re W̃l, (5.41)

where W̃l denotes one of the Gabor-like filters spawned by DT-CWPT, as written in
(5.27).4 The following proposition states that, if the kernel’s bandwidth is small enough
and excludes the origin (band-pass filter), then the output of the convolution layer sums
to zero. This result is not straightforward because of the subsampled convolutions.

Proposition 5.1. We assume that Hypotheses 4.4 and 4.5 are satisfied (monochrome and
Gabor-like convolution kernels). If, moreover,

∥θl∥1 >
κ

2 , (5.42)

then ∑
n∈Z2

Yl[n] = 0, (5.43)

where we remind that Yl ∈ l2R(Z2) has been introduced in (5.6).

Proof. Using Hypothesis 4.4, we get

Yl =
(
Xlum

l ∗ Re W̃l

)
↓ m, (5.44)

4In practice, (5.27) is not always perfectly satisfied for WAlexNet (see Section 5.A.1). However, we
ignore this shortcoming in our experiments.
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where Xlum
l and W̃l have been introduced in (4.195) and (4.191), respectively. We consider

the Shannon interpolations of Xlum
l and W̃l, respectively denoted by FXlum

l
∈ L2

R(R2) and
ΨW̃l
∈ L2

C(R2), satisfying (4.30). We also define, as in (4.49),

F0 : x 7→
(
FXlum

l
∗ ΨW̃l

)
(x) ei⟨θl/s, x⟩. (5.45)

According to (4.31) (Proposition 4.2), Hypothesis 4.5 implies ΨW̃l
∈ V

(
θl/s, κ/s

)
. There-

fore, according to Lemma 4.1,

supp F̂0 ⊂ B∞

(
κ

2s

)
. (5.46)

Moreover, according to Hypothesis 4.5, κ ≤ π/m. We actually relax this hypothesis, and
consider that κ ≤ 2π/m. Thus,

B∞

(
κ

2s

)
⊂ B∞

(
π

ms

)
. (5.47)

Therefore,
F0 ∈ V(s′), with s′ := ms. (5.48)

Note that the proof of Theorem 4.1 follows a similar reasoning, with s′ := 2ms instead of
s′ := ms. We now introduce, similar to (4.59), X0 ∈ l2R(Z2) such that

X0[n] := s′F0(s′n) (5.49)

for any n ∈ Z2. On the one hand, according to (4.26) (Lemma 4.2) with G← F0, Y← X0
and s← s′, we get, for any ξ ∈ B∞(π/s′),

F̂0(ξ) = s′ X̂0(s′ξ). (5.50)

On the other hand,

X0[n] = ms
(
FXlum

l
∗ ΨW̃l

)
(msn) ei⟨θl/s, msn⟩ (5.51)

= ms
[(

Xlum
l ∗ W̃l

)
↓ m

]
[n] ei⟨mθl, n⟩, (5.52)

according to (4.33) in Proposition 4.2, with X← Xlum
l and W← W̃l. Therefore,

∑
n∈Z2

Yl[n] = 1
s′ Re

∑
n∈Z2

X0[n] e−i⟨mθl, n⟩

 (5.53)

= 1
s′ Re X̂0(mθl) = 1

s′2 Re F̂0(θl/s), (5.54)

according to (5.50) with ξ ← θl/s. By hypothesis (5.42), ∥θl/s∥1 > κ/(2s). Therefore,
according to (5.46), θl/s is outside the support of F̂0, which concludes the proof.
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In practice, the power spectrum of DT-CWPT filters cannot be exactly zero on regions
with nonzero measure, since they are finitely supported. However, we assume that it is
concentrated in a region of size π/2J−1 = π/m, as evidenced in Table 4.1. Therefore, since
we have discarded low-pass filters, the conditions of Proposition 5.1 are approximately met
for W̃l. We then assume that (5.43) is satisfied. Moreover, we assume that E[Yl[n]] is
constant for any n ∈ supp(Yl).5 We then get, for any n ∈ Z2, E[Yl[n]] = 0. Therefore,
interchanging max pooling and ReLU yields the normalized version of (5.20):

Amax
l = ReLU

 Ymax
l√

Em[Y2
l ] + ε

+ bl

 . (5.55)

As in Section 5.4.1, we replace Ymax
l by Ymod

l for any Gabor channel l ∈ G, which
yields the normalized version of (5.22):

Amod
l := ReLU

 Ymod
l√

Em[Y2
l ] + ε

+ bl

 . (5.56)

Implementing (5.56) within a deep learning architecture is cumbersome because Yl

needs to be explicitly computed and kept in memory, in addition to Ymod
l . Instead, we

want to express the second-order moment Em[Y2
l ] (in the denominator) as a function of

Ymod
l . To this end, we state the following proposition.

Proposition 5.2. Under Hypotheses 4.4 and 4.5, we have

∥∥Ymod
l

∥∥2
2 = 1

4 ∥Zl∥22 , (5.57)

with

Zl :=
K−1∑
k=0

(Xk ∗Wlk) ↓ m, (5.58)

where the complex-valued filter Wlk ∈ l2C(Z2) has been introduced in (5.12).

Proof. Under Hypothesis 4.4, (5.58) becomes

Zl =
(
Xlum

l ∗ W̃l

)
↓ m, (5.59)

similar to (5.44). As in the proof of Proposition 5.1, we consider the low-frequency function
F0 ∈ L2

C(R2) satisfying (5.45), and a uniform sampling X0 ∈ l2C(Z2) of F0 at interval
s′ := ms, satisfying (5.49). Besides, we consider another uniform sampling of F0, denoted
by X00, satisfying

X00[n] := s′′F0(s′′n), (5.60)

with s′′ := 2ms.
5Aside from boundary effects, this is true if E[Xlum[n]] is constant for any n ∈ supp(Xlum). This

property is a consequence of the stationary hypothesis formulated in Proposition 4.10. It is a rough
description of images of natural scenes or man-made objects. This hypothesis has to be considered with
caution, as explained in Remark 4.16.
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On the one hand, using (5.52) and (5.59), we get

∥X0∥22 = m2s2 ∥Zl∥22 . (5.61)

On the other hand, Ymod
l , defined in (5.23), can be written

Ymod
l =

∣∣∣∣(Xlum
l ∗ W̃l

)
↓ (2m)

∣∣∣∣ . (5.62)

Moreover, X00[n] = 2X0[2n] for any n ∈ Z2. Therefore, using again (5.52), we get

∥X00∥22 = 4m2s2 ∥∥Ymod
l

∥∥2
2. (5.63)

Finally, we show that
∥X00∥22 = ∥X0∥22 . (5.64)

To do so, we consider Hypothesis 4.5, and apply a similar reasoning as (5.46)–(5.48) in
the proof of Proposition 5.1. Considering κ ≤ 2π/m on the one hand and κ ≤ π/m on the
other hand, we get

supp F̂0 ⊂ B∞

(
π

ms

)
and supp F̂0 ⊂ B∞

(
π

2ms

)
, (5.65)

which yields
F0 ∈ V(s′) and F0 ∈ V(s′′). (5.66)

Therefore, according to (4.26) (Lemma 4.2) with G ← F0, Y ← X0 (respectively, Y ←
X00), and s← s′ (respectively, s← s′′), we get

∥F0∥L2 = ∥X0∥2 and ∥F0∥L2 = ∥X00∥2 , (5.67)

which yields (5.64). Finally, combining (5.61) and (5.63) concludes the proof.

In the denominator of (5.56), we have

Em
[
Y2

l

]
= m2

N2 E
[
∥Yl∥22

]
. (5.68)

Moreover, Yl = Re Zl. However, there is no deterministic relationship between ∥Yl∥22 and
∥Zl∥22, due to aliasing effects: the energy of Zl may be unbalanced between its real and
imaginary parts. Nevertheless, we can reasonably assume that

E
[
∥Yl∥22

]
= 1

2E
[
∥Zl∥22

]
. (5.69)

Therefore, Proposition 5.2 implies that

E
[∥∥Ymod

l

∥∥2
2

]
= 1

2E
[
∥Yl∥22

]
. (5.70)

Furthermore, we compute, similar to (5.68),

E2m

[
Ymod

l
2] = 4m2

N2 E
[∥∥∥Ymod

l

∥∥∥2

2

]
(5.71)

= 2Em
[
Y2

l

]
, (5.72)
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according to (5.70) and (5.68). In the above expression, the second-order moment of Ymod
l

is computed on feature maps which are twice smaller than Yl in both directions, hence
the index “2m”, which is the subsampling factor for the CMod operator. Finally, (5.56)
becomes

Amod
l := ReLU

 Ymod
l√

1
2E2m

[
Ymod

l
2]+ ε

+ bl

 . (5.73)

In the case of ResNet, the bias layer (Bias) is therefore preceded by a batch normalization
layer without mean centering satisfying (5.73), which we call BN0.

5.A.3 Experimental Settings

We provide further information that complements the experimental details presented in
Section 5.5.1 and Table 5.1.

As explained in Section 5.4.2, the decomposition depth J is chosen such that m = 2J−1,
where m denotes the subsampling factor. Since m = 4 in AlexNet and 2 in ResNet, we
get J = 3 and 2, respectively. Therefore, the number of dual-tree filters Kdt := 2 × 4J

is equal to 128 and 32, respectively. For any k ∈ {0 . .Kdt − 1}, we denote by θdt
k′ the

characteristic frequency of Wdt
k′ , such that

Wdt
k′ ∈ J

(
θdt

k′ , κ
)
, (5.74)

where κ := π/2J−1 denotes the bandwidth of the DT-CWPT filters such as introduced in
(4.214). Recall that the Gabor-like property (5.74) has been established in Proposition 4.9.
We then manually selected K ′

dt < Kdt filters. In particular, we removed the two low-pass
filters, which are outside the scope of our theoretical study, satisfying

θdt
k′ ∈

{
θ ∈ [0, π]× [−π, π]

∣∣∣∣ ∥θ∥∞ ≤ π

2J

}
. (5.75)

Besides, for computational reasons, in WAlexNet we removed the 32 filters satisfying

θdt
k′ ∈

{
θ := (θx, θy)⊤ ∈ [0, π]× [−π, π]

∣∣∣∣ min (|θx|, |θy|) >
π

2

}
, (5.76)

corresponding to the corner regions of the Fourier domain, as depicted in Figure 5.13a.
These characteristic frequencies are indeed absent from the freely-trained model, as evi-
denced in Figure 5.8a. Finally, in WResNet we removed the 14 filters whose bandwidths
outreach the boundaries of the Fourier domain [−π, π]2. Their characteristic frequencies
satisfy

θdt
k′ ∈

{
θ ∈ [0, π]× [−π, π]

∣∣∣∣ ∥θ∥∞ >
3π
4

}
, (5.77)

as depicted in Figure 5.13b. These filters indeed have a poorly-defined orientation, since
a small fraction of their energy is located at the far end of the Fourier domain (Bayram
and I. W. Selesnick, 2008, see Fig. 1, “Proposed DT-CWPT”). Therefore, they somewhat
exhibit a checkerboard pattern.6

6Note that the same procedure could have been applied to WAlexNet, but it was deemed unnecessary
because the boundary filters were in general spontaneously discarded during training.
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(a) WAlexNet (J = 3) (b) WResNet (J = 2)

Figure 5.13. Mapping scheme from DT-CWPT feature maps D ∈ l2C(Z2)Kdt to the wavelet block’s
output Ygab ∈ l2R(Z2)Lgab . Each wavelet feature map is symbolized by a small square in the Fourier
domain, where its energy is mainly located. The gray areas show the feature maps which have
been manually removed, according to (5.75), (5.77) and (5.77). Elsewhere, each group of feature
maps D(q) ∈ l2C(Z2)Kq is symbolized by a dark frame (Kq is always equal to 1 for WResNet). For
each group q ∈ {0 . . Q− 1}, a number indicates how many output channels Lq are assigned to it.
The colored numbers in (a) refer to groups on which we have applied l∞/l1-regularization. Note
that, since inputs are real-valued, only the half-plane of positive x-values is considered.

As explained in Section 5.A.1, once the DT-CWPT feature maps have been manually
selected, the output D′ ∈ l2C(Z2)K′

dt is sliced into Q groups of channels D(q) ∈ l2C(Z2)Kq .
For each group q, a depthwise linear mapping from D(q) to a bunch of output chan-
nels Y(q) ∈ l2R(Z2)Lq is performed. Finally, the wavelet block’s output feature maps
Ygab ∈ l2R(Z2)Lgab are obtained by concatenating the outputs Y(q) depthwise, for any
q ∈ {0 . . Q− 1}. Figure 5.13 shows how the above grouping is made, and how many
output channels Lq each group q is assigned to. These values were estimated from the
freely-trained models, by analyzing the empirical distribution of the characteristic frequen-
cies (θl)l∈G such as introduced in (5.19).

During training, the above process aims at selecting one single DT-CWPT feature map
among each group. This is achieved through mixed-norm l∞/l1 regularization, as intro-
duced in (5.37). The regularization hyperparameters λ(q) have been chosen empirically.
If they are too small, then regularization will not be effective. On the contrary, if they
are too large, then the regularization term will become predominant, forcing the trainable
parameter vector α

(q)
l to randomly collapse to 0 except for one element. The chosen values

of λ(q) are displayed in Table 5.6.
As for the freely-trained models (Figure 5.4), the statistical distribution of (ρ̃l)k∈G ,

where ρ̃l ∈ [0, 1] (5.18) denotes the maximum percentage of energy of W̃l ∈ l2C(Z2) within
a Fourier window of size κ × κ, is plotted in Figure 5.14. As before, the window size
κ has been set to its largest admissible value, i.e., κ := π/m = π/2J−1. If (5.36) is
satisfied (perfect sparse regularization, i.e., exactly one DT-CWPT filter selected during
the training process), then we should have ρ̃l ≈ 0.95 for WAlexNet and 0.98 for WResNet,
according to Table 4.1. This is true for WResNet, since each Gabor channel l ∈ G has been
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Model Filt. frequency Reg. param.

WAlexNet
[π/8, π/4[ –
[π/4, π/2[ 4.1 · 10−3

[π/2, π[ 3.2 · 10−4

WResNet any –

Table 5.6. Regularization hyperparameters λ(q) for each group q of DT-CWPT feature maps.
The groups with only one feature map do not need any regularization since this feature map
is automatically selected. The second and third rows of WAlexNet correspond to the blue and
magenta groups in Figure 5.13a, respectively.

Figure 5.14. Mathematical twins: energy concentration of the Gabor-like kernels
(
W̃l

)
l∈G (5.27)

within a Fourier window of size κ×κ, with κ := π/m. This plot is to be compared with Figure 5.4
for the freely-trained models. According to Table 4.1 (energy concentration of DT-CWPT filters
with depth J = 3, i.e., stride m = 4), we could expect ρ̃l ≈ 0.95 for any l ∈ G in WAlexNet.
However, this is generally not true, because the wavelet block may fail to properly select a single
DT-CWPT filter (see Figure 5.13).

assigned to one DT-CWPT filter exactly—see Figure 5.13. However, in WAlexNet, the
l1/l∞-regularizer (5.37) guides training towards sparse filter selection, without completely
enforcing it. Therefore, (5.36) is not fully guaranteed, which explains the distribution
plotted in Figure 5.14. We ignored this shortcoming in our experiments, and treated all
Gabor channels as if (5.36) was properly achieved.

5.B Appendix: Computational Cost

This section provides technical details about our estimation of the computational cost
(FLOPs), such as reported in Table 5.5, for one input image and one Gabor channel. This
metric was estimated in the case of standard 2D convolutions.

Average Computation Time per Operation

The following values have been determined experimentally using PyTorch (CPU compu-
tations). They have been normalized with respect to the computation time of an addition.
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ts = 1.0 (addition);
tp = 1.0 (multiplication);
te = 0.75 (exponential);

tmod = 3.5 (modulus);
trelu = 0.75 (ReLU);
tmax = 12.0 (max pooling).

Computational Cost per Layer

In the following paragraphs, L ∈ N \ {0} denotes the number of output channels (depth)
and N ′ ∈ N \ {0} denotes the size of output feature maps (height and width). However,
note that N ′ is not necessary the same for all layers. For instance, in standard ResNet,
the output of the first convolution layer is of size N ′ = 112, whereas the output of the
subsequent max pooling layer is of size N ′ = 56. For each type of layer, we calculate the
number of FLOPs required to produce a single output channel l ∈ {0 . . L− 1}. Moreover,
we assume, without loss of generality, that the model processes one input image at a time.

Convolution Layers. Inputs of size (K ×N ×N) (input channels, height and width);
outputs of size (L × N ′ × N ′). For each output unit, a convolution layer with kernels
of size (Nf × Nf) requires KN2

f multiplications and KN2
f − 1 additions. Therefore, the

computational cost per output channel is equal to

Tconv = N ′2
(
(KN2

f − 1) · ts +KN2
f · tp

)
. (5.78)

Complex Convolution Layers. Inputs of size (K ×N ×N); complex-valued outputs
of size (L×N ′ ×N ′). For each output unit, a complex-valued convolution layer requires
2 × KN2

f multiplications and 2 × (KN2
f − 1) additions. Computational cost per output

channel:
TC conv = 2N ′2

(
(KN2

f − 1) · ts +KN2
f · tp

)
. (5.79)

Note that, in our implementations, the complex-valued convolution layers are less expen-
sive than the real-valued ones, because the output size N ′ is twice smaller, due to the
larger subsampling factor.

Bias and ReLU. Inputs and outputs of size (L × N ′ × N ′). One evaluation for each
output unit:

Tbias = N ′2 ts and Trelu = N ′2 trelu. (5.80)

Max Pooling. Outputs of size (L×N ′×N ′), withN ′ depending on whether subsampling
is performed at this stage (no subsampling when followed by a blur pooling layer). One
evaluation for each output unit:

Tmax = N ′2 tmax. (5.81)
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Modulus Pooling. Complex-valued inputs and real-valued outputs of size (L×N ′×N ′).
One evaluation for each output unit:

Tmod = N ′2 tmod. (5.82)

Batch Normalization. Inputs and outputs of size (L×N ′×N ′). A batch normalization
(BN) layer, described in (5.38), can be split into several stages.

(1) Mean: N ′2 additions.

(2) Standard deviation: N ′2 multiplications, N ′2 additions (second moment), N ′2 addi-
tions (subtract squared mean).

(3) Final value: N ′2 additions (subtract mean), 2N ′2 multiplications (divide by standard
deviation and multiplicative coefficient).

Overall, the computational cost per image and output channel of a BN layer is equal to

Tbn = N ′2 (4 ts + 3 tp) . (5.83)

Static Blur Pooling. Inputs of size (L × 2N ′ × 2N ′); outputs of size (L × N ′ × N ′).
For each output unit, a static blur pooling layer (R. Zhang, 2019) with filters of size
(Nb×Nb) requires N2

b multiplications and N2
b − 1 additions. The computational cost per

output channel is therfore equal to

Tblur = N ′2
(
(N2

b − 1) · ts +N2
b · tp

)
. (5.84)

Adaptive Blur Pooling. Inputs of size (L×2N ′×2N ′); outputs of size (L×N ′×N ′).
An adaptive blur pooling layer (X. Zou et al., 2023) with filters of size (Nb × Nb) splits
the L output channels into Q := L/Lg groups of Lg channels that share the same blurring
filters. The adaptive blur pooling layer can be decomposed into the following stages.

(1) Generation of blurring filters using a convolution layer with trainable kernels of size
(Nb × Nb): inputs of size (L × 2N ′ × 2N ′), outputs of size (QN2

b × N ′ × N ′). For
each output unit, this stage requires LN2

b multiplications and LN2
b − 1 additions.

The computational cost divided by the number L of channels is therefore equal to

Tconv ablur = N ′2 N
2
b

Lg

(
(LN2

b − 1) · ts + LN2
b · tp

)
. (5.85)

Note that, despite being expressed on a per-channel basis, the above computational
cost depends on the number L of output channels. This is due to the asymptotic
complexity of this stage in O(L2).

(2) Batch normalization, inputs and outputs of size (QN2
b ×N ′ ×N ′):

Tbn ablur = N ′2 N
2
b

Lg
(4 ts + 3 tp) . (5.86)
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(3) Softmax along the depthwise dimension:

Tsftmx ablur = N ′2 N
2
b

Lg
(te + ts + tp). (5.87)

(4) Blur pooling of input feature maps, using the filter generated at stages (1)–(3):
inputs of size (L × 2N ′ × 2N ′), outputs of size (L × N ′ × N ′). The computational
cost per output channel is identical to the static blur pooling layer, even though the
weights may vary across channels and spatial locations:

Tblur = N ′2
(
(N2

b − 1) · ts +N2
b · tp

)
. (5.88)

Overall, the computational cost of an adaptive blur pooling layer per input image and
output channel is equal to

Tablur = N ′2 N
2
b

Lg

[(
(L+ 1)N2

b + 3
)
· ts +

(
(L+ 1)N2

b + 4
)
· tp + te

]
. (5.89)

We notice that an adaptive blur pooling layer has an asymptotic complexity in O(N4
b),

versus O(N2
b) for static blur pooling.

Application to AlexNet- and ResNet-based Models

Since they are normalized by the computational cost of standard models, the FLOPs
reported in Table 5.5 only depend on the size of the convolution kernels and blur pooling
filters, respectively denoted by Nf and Nb ∈ N \ {0}. In addition, the computational cost
of the adaptive blur pooling layer depend on the number of output channels L as well as
the number of output channels per group Lg.

In practice, Nf is respectively equal to 11 and 7 for AlexNet- and ResNet-based models.
Moreover, Nb = 3, L = 64 and Lg = 8. Actually, the computational cost is largely
determined by the convolution layers, including step (1) of adaptive blur pooling.

5.C Appendix: Memory Footprint
This section provides technical details about our estimation of the memory footprint for
one input image and one output channel, such as reported in Table 5.5. This metric is gen-
erally difficult to estimate, and is very implementation-dependent. Hereafter, we consider
the size of the output tensors, as well as intermediate tensors saved by torch.autograd
for the backward pass. However, we didn’t take into account the tensors containing the
trainable parameters. To get the size of intermediate tensors, we used the Python package
PyTorchViz.7 These tensors are saved according to the following rules.

• Convolution (Conv), batch normalization (BN), Bias, max pooling (MaxPool or
Max), blur pooling (BlurPool), and Modulus: the input tensors are saved, not the
output. When Bias follows Conv or BN, no intermediate tensor is saved.

• ReLU, Softmax: the output tensors are saved, not the input.
7https://github.com/szagoruyko/pytorchviz
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• If an intermediate tensor is saved at both the output of a layer and the input of the
next layer, its memory is not duplicated. An exception is Modulus, which stores the
input feature maps as complex numbers.

• MaxPool or Max: a tensor of indices is kept in memory, indicating the position of
the maximum values. The tensors are stored as 64-bit integers, so they weight twice
as much as conventional float-32 tensors.

• BN: four 1D tensors of length L are kept in memory: computed mean and variance,
and running mean and variance. For BN0 (Section 5.A.2), where variance is not
computed, only two tensors are kept in memory.

In the following paragraphs, we denote by L the number of output channels, N the
size of input images (height and width), m the subsampling factor of the baseline models
(4 for AlexNet, 2 for ResNet), Nb the blurring filter size (set to 3 in practice). For each
model, a table contains the size of all saved intermediate or output tensors. For example,
the values associated to “Layer1→ Layer2” correspond to the depth (number of channel),
height and width of the intermediate tensor between Layer1 and Layer2.

AlexNet-based Models

No Antialiasing. Conv→ Bias→ ReLU→ MaxPool.

ReLU → MaxPool L N
m

N
m

MaxPool → output L N
2m

N
2m

MaxPool indices (×2) L N
2m

N
2m

Then, the memory footprint for each output channel is equal to

=⇒ Sstd = 7
4
N2

m2 .

Static Blur Pooling. Conv→ Bias→ ReLU→ BlurPool→ Max→ BlurPool.

ReLU → BlurPool L 2N
m

2N
m

BlurPool → Max L N
m

N
m

Max → BlurPool L N
m

N
m

Max indices (×2) L N
m

N
m

BlurPool → output L N
2m

N
2m

=⇒ Sblur = 33
4
N2

m2 .

CMod-based Approach. CConv→ Modulus→ Bias→ ReLU.

CConv → Modulus 2L N
2m

N
2m

Modulus → Bias L N
2m

N
2m

ReLU → output L N
2m

N
2m

=⇒ Smod = N2

m2 .
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ResNet-based Models

No Antialiasing. Conv→ BN→ Bias→ ReLU→ MaxPool.

Conv → BN L N
m

N
m

BN metrics 4L – –

ReLU → MaxPool L N
m

N
m

MaxPool → output L N
2m

N
2m

MaxPool indices (×2) L N
2m

N
2m

=⇒ Sstd = 11
4
N2

m2 + 4 ≈ 11
4
N2

m2 .

Static Blur Pooling. Conv→ BN→ Bias→ ReLU→ Max→ BlurPool.

Conv → BN L N
m

N
m

BN metrics 4L – –

ReLU → Max L N
m

N
m

Max → BlurPool L N
m

N
m

Max indices (×2) L N
m

N
m

BlurPool → output L N
2m

N
2m

=⇒ Sblur = 21
4
N2

m2 + 4 ≈ 21
4
N2

m2 .

Adaptive Blur Pooling. Conv→ BN→ Bias→ ReLU→ Max→ ABlurPool.

Conv → BN L N
m

N
m

BN metrics 4L – –

ReLU → Max L N
m

N
m

Max → ABlurPool L N
m

N
m

Max indices (×2) L N
m

N
m

ABlurPool → output L N
2m

N
2m

Generate adaptive blurring filter

Conv → BN → Bias → Softmax

Conv → BN LN2
b

Lg
N

2m
N

2m

BN metrics 4 LN2
b

Lg
– –

Softmax → output LN2
b

Lg
N

2m
N

2m

=⇒ Sablur = 21
4
N2

m2 + 4 + N2
b

Lg

(
N2

2m2 + 4
)

≈ 21
4
N2

m2 + N2
b

Lg

N2

2m2 .
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5.C. APPENDIX: MEMORY FOOTPRINT

CMod-based Approach. CConv→ Modulus→ BN0→ Bias→ ReLU.

CConv → Modulus 2L N
2m

N
2m

Modulus → BN0 L N
2m

N
2m

BN0 metrics 2L – –

ReLU → output L N
2m

N
2m

=⇒ Smod = N2

m2 + 2 ≈ N2

m2 .

145



Chapter 6

Conclusion and Perspectives

This thesis makes theoretical and experimental contributions to the understanding
of shift invariance in CNNs. To this end, we applied theoretical tools from the
field of digital image processing, thus reinforcing the link between the two disci-

plines. Our main achievements are summarized in Section 6.1. To wrap up, we explore in
Section 6.2 several perspectives for future research.

6.1 Summary of Contributions

6.1.1 Theoretical Study

In Chapter 4, we presented a theoretical study on the relationship between two oper-
ators. The first one, RMax, implements the max pooling of real-valued convolutions
as implemented in CNNs, whereas the second one, CMod, implements the modulus of
complex-valued convolutions. In this chapter, we showed that (1) CMod is nearly in-
variant to translations, if the convolution kernel is band-pass and oriented (Gabor-like
filter); (2) RMax and CMod produce comparable outputs, except for some filter frequen-
cies regularly scattered across the Fourier domain. We then combined these two properties
to establish a probabilistic metric of stability for RMax outputs, which depends on the
convolution kernel’s frequency vector. This chapter tackled the three issues raised in
Section 1.1.1 as follows.

• This work sought to bridge the gap in research regarding the role of the max pooling
operator on shift invariance in CNNs. Inspired by Waldspurger (2015), we showed
that max pooling tends to extract the local maximum amplitude of a high-frequency
2D signal. When the signal exhibits slow variations of its envelope, this process ap-
proximates the modulus of a complex signal, thereby establishing stability properties
to small input shifts, and a connection with complex analysis.

• While many studies have investigated invariance properties in the continuous frame-
work, the discrete case requires careful consideration, because aliasing effects can
appear when sampling high-frequency signals. Our work addressed this issue by us-
ing Shannon’s sampling theorem to demonstrate a link between analog and digital
image processing. Additionally, due to potential degeneracies that can arise when
using max pooling (which operates on a discrete grid) with certain filter frequencies,
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we adopted a probabilistic approach, unraveling a regular pattern of unstable filters
in the Fourier domain—see Figure 4.3. This is what motivated the design of our
antialiasing approach, which we have described and tested in Chapter 5.

• A link was missing between real- and complex-valued convolutions in CNNs. By
comparing the outputs of CMod and RMax operators, we established a connec-
tion between these two worlds, creating opportunities for extensions of the results
obtained for complex wavelet transforms and wavelet scattering networks. To para-
phrase Tygert et al. (2016), the correspondence between standard real-valued CNNs
(using max pooling) and complex wavelets is no longer “just a vague analogy.”

This work was essentially theoretical, with only essential experiments conducted on a de-
terministic model based on the dual-tree complex wavelet packet transform (DT-CWPT).

6.1.2 Experimental Study

Building upon our theoretical work, Chapter 5 introduced an antialiasing approach for
CNNs, based on convolutions with complex-valued Gabor-like kernels. Specifically, we
considered the CMod operator as a proxy for RMax, extracting comparable, yet more
stable features. In compliance with the theory established in Chapter 4, the RMax-
CMod substitution was only applied to the output channels associated with Gabor-like
kernels, which are known to arise spontaneously in the first layer of CNNs trained on
image datasets. Prior to antialiasing, we thus forced the kernels to adopt a Gabor-like
structure by designing a DT-CWPT-based mathematical twin reproducing the behavior
of freely-trained architectures, which we called WCNN. This chapter synthesized the ideas
introduced in Sections 1.1.2 and 1.1.3. On the one hand, the WCNN design achieved the
following goals:

• Conventional Gabor transforms require manual tuning of a set of parameters. In
contrast, DT-CWPT only requires choosing the subsampling factor, which is imposed
by the network architecture. It shall be noted that a set of QMFs also needs to be
selected—see Section 3.3.3. However, in practice, a commonly-used filter with a
reasonable length, such as Q-shift with length 10, sufficed to produce convincing
results. A deeper discussion on this topic is provided in Section 6.2.3.

• We evaluated the similarity between WCNNs and freely-trained CNNs in terms of
kernel frequency, orientation, and bandwidth. Our findings showed that both models
shared similar kernel characteristics, which supported our decision to use DT-CWPT
as a discrete Gabor-like transform.

• Controlling the behavior of the model allowed for easier implementation of our an-
tialiasing method. In particular, the real and imaginary components of the DT-
CWPT filters form an approximate Hilbert transform pair, which naturally provides
the complex-valued representation needed for this purpose.

On the other hand, our antialiasing approach, which we have tested on the WCNN archi-
tecture, offers several advantages over concurrent methods for improving shift invariance.

• Unlike blur-pooling-based antialiasing (R. Zhang, 2019; X. Zou et al., 2023), our
method extracts high-frequency features that are stable to translations, thereby
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achieving a better balance between stability and information preserving. This re-
sulted in increased accuracy for most models.

• In contrast to adaptive blur pooling (X. Zou et al., 2023), our approach is more
computationally and memory efficient, and does not require additional trainable
parameters.

• Our proposed approach is designed for stability with respect to fractional-pixel trans-
lations, similar to blur pooling but unlike APS (Chaman and Dokmanic, 2021), which
does not perform antialiasing. Nonetheless, combining it with APS could lead to even
more robust models. This topic is left for future work.

In the following sections, we discuss several research directions that build upon the con-
tributions of this thesis. Specifically, we explore the following topics: (1) stability of max
pooling outputs with respect to other types of deformations; (2) applicability of our the-
oretical and experimental contributions to small convolution kernels; (3) learning optimal
QMFs in the WCNN twin architecture introduced in Chapter 5; (4) using complex-valued
convolutions layers as a stable tokenizer for vision transformers.

6.2 Future Research Directions

6.2.1 Beyond Translation Invariance

Chapter 4 tackled the subject of translation invariance of CMod and RMax outputs, when
the convolution kernel is band-pass and oriented. As stated in Theorems 4.1 and 4.3,
stability increases when the Fourier window size κ decreases. The asymptotical case is
the infinite filter of complex exponential W[n] := ei⟨n, θ⟩, for a given θ ∈ [−π, π]2, which
satisfies W ∈ J

(
θ, κ

)
(4.12) with κ = 0. The convolution with W, which computes the

discrete-time Fourier transform up to a phase shift, has a magnitude which is perfectly
translation invariant:

∀u ∈ R2,
∣∣TuX ∗W

∣∣ =
∣∣X ∗W

∣∣. (6.1)
In CNNs, the bandwidth of the Gabor-like convolution kernels (i.e., κ) tends to de-

crease with larger stride m (subsampling factor) and wider kernels. For instance, AlexNet,
which implements an initial convolution layer with kernels of size 11×11 and stride m = 4,
yields higher Fourier resolution than ResNet, with kernels of size 7 × 7 and m = 2 (see
Figure 5.2). An analogy can be done with the dual-tree complex wavelet packet trans-
form (DT-CWPT), for which the subsampling factor m := 2J is inversely proportional
to the bandwidth κ := π/2J−1. Therefore, in order to improve shift invariance, it could
be tempting to jointly widen the convolution kernel and increase the stride m in the first
convolution layer, thus allowing to increase the Fourier resolution. However, we face an-
other problem at high frequencies: when the bandwidth of a convolution filter decreases,
it becomes more susceptible to small distortions in the input signal (Mallat, 2012). When
choosing hyperparameters for a convolution layer, a tradeoff must therefore be found to
preserve both shift invariance and stability to deformations.

In wavelet scattering networks (ScatterNets) (Bruna and Mallat, 2013), the trade-
off is chosen as follows: the bandwidth is larger—and the stride is smaller—at higher
frequencies, following a standard multiresolution structure. This ensures stability to de-
formations. Then, near shift-invariance is obtained by low-pass filtering and downsampling
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(a) RMax (b) CMod

(c) ScatterNet-like RMax (d) ScatterNet-like CMod

Figure 6.1. Top: typical CNN configuration where all output channels share the same stride
and kernel size (batch normalization, bias and ReLU are ignored for the sake of simplicity). (a)
ResNet’s initial convolution layer followed by max pooling. (b) Shift-invariant model: RMax-
CMod substitution introduced in Chapter 5 (simplified version). Bottom: ScatterNet-inspired
multiresolution architecture, with two layers of scattering transform. The smaller kernels are
intended for higher frequencies (and larger bandwidth). (c) RMax version, similar to standard
CNNs. (d) CMod version (antialiased model), similar to standard ScatterNets with trainable
parameters. The scattering-like structure allows combining near-shift invariance and stability to
deformations. The number of output channels have been arbitrarily chosen and may be adjusted
to optimize performances.

the feature maps after computing the modulus—not unlike the blur pooling strategy in-
troduced by R. Zhang (2019). Finally, high-frequency information is preserved by further
decomposing the magnitude of the wavelet feature maps, therefore adopting a multilayer
convolutional architecture. In contrast however, standard convolution layers in CNNs
generally share the same kernel size and stride across all output channels, which prevents
the network from learning a multiresolution-like feature extractor. Figure 6.1 provides
a schematic representation of a standard convolution layer followed by max pooling, as
well as a ScatterNet-inspired architecture, which contains parallel convolution layers with
different kernel sizes and strides. The CMod version of this architecture (Figure 6.1d) is
therefore expected to be stable to both translations and other types of deformations.

Further investigation would be needed to analyze the Lipschitz continuity to defor-
mations for CMod and RMax outputs in the discrete framework, and to improve the an-
tialiasing approach implemented in Chapter 5 to incorporate these additional constraints.
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(a) One layer, 64 output channels. Kernel size = 3 × 3, stride = 2

(b) Two layers, 128 output channels. Kernel size = 7 × 7, stride = 4

Figure 6.2. Resulting kernels obtained by stacking the first convolution layers of VGG-11 trained
on ImageNet-1K. Left: spatial domain; right: Fourier domain (magnitude spectra). The two-layer
kernels (b) are visually quite similar to ResNet’s first-layer kernels (see Figure 5.2b).

6.2.2 What About Small Convolution Kernels?

This thesis was focused on convolution kernels that are wide enough to exhibit Gabor-like
patterns. However, a certain number of CNN architectures, including VGG (Simonyan
et al., 2014) or MobileNet (Howard et al., 2017; Sandler et al., 2018), rely on filters with
small 3 × 3 receptive fields, even in the first layer. By stacking several such convolution
layers, it is possible to get larger receptive fields, as in previous models. This architecture
has two main advantages: reducing the number of trainable parameters, and improving
feature discrimination by adding a nonlinear activation function and/or pooling operator
between any two convolution layers. According to Simonyan et al. (2014), this can be seen
as imposing a regularization on a wider convolution kernel.

Can our theoretical results and antialiasing method be adapted to this situation? We
can indeed reasonably assume that the basic feature extraction principles observed in
previous CNNs, such as corner and edge detection, remain valid on those models. A first
thought was to remove the nonlinear operators between convolution layers and visualize
the resulting non-regularized convolution kernels. Figure 6.2a displays the first-layer 3×3
kernels of VGG-11 trained on ImageNet-1K, whereas Figure 6.2b shows the resulting
kernels obtained by stacking the first two convolution layers. To be consistent with the
original network’s subsampling factor, we increased the stride of the first convolution
layer to compensate the absence of max pooling layer. The resulting subsampling factor
is therefore equal to 4, with receptive field of size 7× 7. This preliminary result suggests
that Gabor-like structures seem to emerge from the combination of several convolution
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layers. To our knowledge, there is no theoretical work studying the relationship between
small-kernel architectures and Gabor-like transforms. Delving deeper into this topic may
therefore lead to a generalization of our work to a broader family of CNNs.

Additionally, the ScatterNet-inspired model presented in Figure 6.1 suggests that
CNNs could benefit from using a stack of small convolution kernels followed by nonlinear
activation and pooling operators, as implemented in VGG, in parallel to wider kernels with
larger stride, as implemented in ResNet. This would lead to a scattering-like multiresolu-
tion architecture, with potential for producing stable feature representations (with respect
to both translations and deformations), while preserving high-frequency information.

6.2.3 Learning Optimal Filters for DT-CWPT

In the design of the mathematical twin in Chapter 5, DT-CWPT was implemented with
two pairs of QMFs (h[0], g[0]) and (h[1], g[1]) of type Q-shift (Kingsbury, 2003), which ap-
proximately satisfy the half-sample delay condition (3.91) required to get analytic complex
wavelets. However, these filters were fixed during training. As explained in Section 3.2.3,
the ability of wavelets to produce sparse image representations depend on the number
of vanishing moments and support size. Additionally, other aspects such as filter sym-
metry (Daubechies, 1993), or relationship between the dual-tree low-pass filters h[0] and
h[1] (I. W. Selesnick et al., 2005), may be considered to produce optimal feature vectors.
However, some of these requirements are mutually exclusive. For instance, there exists
a tradeoff between the number of vanishing moments and the support size (Daubechies,
1988). Besides, the half-sample delay condition cannot be exactly satisfied if the filters are
finitely-supported. Therefore, choosing the best set of filters is not straightforward and
may depend on the task at hand.

A possible room for improvement could be to consider the QMFs as trainable param-
eters. To this end, we conducted initial experiments on the WCNN models introduced in
Section 5.4. The filters were initialized as before, but their weights were updated during
training. The experiment however was not conclusive: the RMax-CMod substitution re-
sulted in a loss of accuracy. This could be improved by adding a regularization term to
the model’s cross-entropy loss, to ensure that conditions (3.17), (3.18) and (3.91) remain
satisfied after training.

6.2.4 From CNNs to Vision Transformers

Throughout this thesis, we focused on the first convolution layer followed by nonlinear
activation and max pooling operators. While this may seem like a limited scope, it is
important to note that initial layers play a critical role in CNNs by extracting low-level
geometric features such as edges, corners or textures. Therefore, a specific attention is
required for their design. In contrast, deeper layers are more focused on capturing high-
level structures that conventional image processing tools are poorly suited for, as pointed
out by Oyallon et al. (2017) in the context of hybrid scattering networks.

In fact, there is a growing interest in using self-attention mechanisms in computer
vision to capture complex, long-range dependencies among image representations. As
mentioned in Section 2.3.4, Dosovitskiy et al. (2021) were the first to adapt the transformer
architecture from the field of NLP to computer vision. The network, referred to as vision
transformer, or ViT in short, does not contain any convolution layer. Instead, input
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images X ∈
(
l2R(Z2)

)K are split into N fixed-size patches, each of which being flattened
and linearly embedded into a token space of dimension D, using a fully-connected layer.
The resulting matrix, denoted by X ∈ RN×D, serves as input for the first self-attention
module as described in Section 2.3.4.1 This simple procedure lacks inductive biases such
as found in CNNs. Specifically, prior knowledge about the intrinsic structure of images is
missing, such as local 2D connectivity and weight sharing, which led to the very design
of CNNs by LeCun et al. (1989). As a consequence, while ViT outperforms CNNs when
pretrained on large image datasets such as ImageNet-21K (containing 21 classes and 13
millions of images), it fails to do so when trained from scratch on medium-sized or datasets
such as ImageNet-1K, CIFAR or MNIST. In the former case, the lack of inductive bias
was compensated by the very large amount of data from which the network could learn
the basic structure of images.

Recent work on vision transformers has proposed reintroducing inductive bias to the
architecture, by using the first layers of a CNN as a “convolutional tokenizer” (Wu et
al., 2021; Yuan et al., 2021; Hassani et al., 2022), instead of the naive patch extraction
described above. In a nutshell, consider Y ∈

(
l2R(Z2)

)D as the output of a multilayer con-
volutional architecture. Then, flattening the 2D output feature maps yields a set of tokens
Y ∈ RN×D, used as input for a self-attention module. Note that, unlike the original ViT,
a single pixel in the input image is used for several tokens (overlapping patches). These
hybrid CNN-ViT architectures succeeded in outperform standalone CNNs on medium or
even small image datasets, while avoiding cumbersome pretraining on millions of images.

However, an important property has been overlooked: stability with respect to trans-
lations and deformations. Shift invariance in CNNs is often taken for granted (R. Zhang,
2019), but this is generally wrong, as discussed in this thesis. From the perspective of ViTs,
we can reasonably assume that stable token embeddings could contribute to improving the
network’s predictive power. By applying our CMod-based antialiasing method to the con-
volutional tokenizer, we could provide self-attention modules with nearly shift-invariant
inputs, which could be highly beneficial for ViTs, especially when the amount of available
data is limited.

6.3 Epilogue
By establishing connections between real-valued CNNs and complex-valued image process-
ing tools, this thesis contributes to the body of work focused on advancing our understand-
ing of deep learning for computer vision. Increasing control over the behavior of computer
vision algorithms is critical in domains where theoretical guarantees are essential, such as
medicine, or when data are scarce.

1ViT actually implements positional embedding and multi-head attention, but this is left outside the
scope of this discussion.
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